"docs/vscode:/vscode.git/clone" did not exist on "736502d4fda37c5fb1fe53ded5da83f62c300d85"
bench_serving.py 51.7 KB
Newer Older
zhyncs's avatar
zhyncs committed
1
2
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
3

Ying Sheng's avatar
Ying Sheng committed
4
"""
5
Benchmark online serving with dynamic requests.
Ying Sheng's avatar
Ying Sheng committed
6
7

Usage:
8
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
9

10
11
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
python3 -m sglang.bench_serving --backend sglang --dataset-name random --request-rate-range 1,2,4,8,16,32 --random-input 4096 --random-output 1024 --random-range-ratio 0.125 --multi
Ying Sheng's avatar
Ying Sheng committed
12
"""
zhyncs's avatar
zhyncs committed
13
14
15
16
17

import argparse
import asyncio
import json
import os
18
import pickle
zhyncs's avatar
zhyncs committed
19
20
21
22
23
24
import random
import resource
import sys
import time
import traceback
import warnings
25
from argparse import ArgumentParser
zhyncs's avatar
zhyncs committed
26
from dataclasses import dataclass, field
27
from datetime import datetime
28
from pathlib import Path
29
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
zhyncs's avatar
zhyncs committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)

44
45
global args

zhyncs's avatar
zhyncs committed
46
47
48
49
50
51
52
53

@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
54
    lora_name: str
55
    extra_request_body: Dict[str, Any]
zhyncs's avatar
zhyncs committed
56
57
58
59
60
61
62
63
64
65
66


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
67
    output_len: int = 0
zhyncs's avatar
zhyncs committed
68
69
70
71
72
73


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


74
75
76
77
78
79
80
81
82
83
84
85
86
# trt llm not support ignore_eos
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
zhyncs's avatar
zhyncs committed
87
            "temperature": 0.000001,
88
89
90
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
Ying Sheng's avatar
Ying Sheng committed
91
92
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
93
            **request_func_input.extra_request_body,
94
        }
95
96
97
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
Ying Sheng's avatar
Ying Sheng committed
130
                    output.output_len = request_func_input.output_len
131
132
133
134
135
136
137
138
139
140
141
142
143
144

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


zhyncs's avatar
zhyncs committed
145
146
147
148
149
150
151
152
153
154
# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

Lianmin Zheng's avatar
Lianmin Zheng committed
155
156
    prompt = request_func_input.prompt

zhyncs's avatar
zhyncs committed
157
158
159
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
Lianmin Zheng's avatar
Lianmin Zheng committed
160
            "prompt": prompt,
zhyncs's avatar
zhyncs committed
161
162
163
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
164
            "stream": not args.disable_stream,
165
            "ignore_eos": not args.disable_ignore_eos,
166
            **request_func_input.extra_request_body,
zhyncs's avatar
zhyncs committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        }
        headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
188
                        latency = time.perf_counter() - st
zhyncs's avatar
zhyncs committed
189
                        if chunk == "[DONE]":
190
                            pass
zhyncs's avatar
zhyncs committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
205
206
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)
zhyncs's avatar
zhyncs committed
207
208
209
210
211
212
213

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
214
                    output.output_len = request_func_input.output_len
zhyncs's avatar
zhyncs committed
215
216
217
218
219
220
221
222
223
224
225
226
227
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
async def async_request_truss(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
        headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["delta"]["content"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["delta"]["content"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
323
            "lora_path": request_func_input.lora_name,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
            **request_func_input.extra_request_body,
        }
        headers = {}

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text = data["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


387
async def async_request_gserver(
Lianmin Zheng's avatar
Lianmin Zheng committed
388
389
390
391
392
393
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


zhyncs's avatar
zhyncs committed
412
def get_model(pretrained_model_name_or_path: str) -> str:
413
    if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
zhyncs's avatar
zhyncs committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
Lianmin Zheng's avatar
Lianmin Zheng committed
430
431
432
433
434
435
436
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

zhyncs's avatar
zhyncs committed
437
438
439
440
441
442
443
444
445
    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
        )
    elif args.dataset_name == "random":
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
            num_groups=args.gen_num_groups,
            prompts_per_group=args.gen_prompts_per_group,
            system_prompt_len=args.gen_system_prompt_len,
            question_len=args.gen_question_len,
            output_len=args.gen_output_len,
            tokenizer=tokenizer,
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests


zhyncs's avatar
zhyncs committed
477
ASYNC_REQUEST_FUNCS = {
478
479
480
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
zhyncs's avatar
zhyncs committed
481
482
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
483
    "trt": async_request_trt_llm,
484
    "gserver": async_request_gserver,
485
    "truss": async_request_truss,
zhyncs's avatar
zhyncs committed
486
487
488
489
490
491
492
493
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
Ying Sheng's avatar
Ying Sheng committed
494
    total_output_retokenized: int
zhyncs's avatar
zhyncs committed
495
496
497
    request_throughput: float
    input_throughput: float
    output_throughput: float
Ying Sheng's avatar
Ying Sheng committed
498
    output_throughput_retokenized: float
499
500
    total_throughput: float
    total_throughput_retokenized: float
zhyncs's avatar
zhyncs committed
501
502
503
504
505
506
507
508
509
510
511
512
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
    p99_itl_ms: float
zhyncs's avatar
zhyncs committed
513
514
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
zhyncs's avatar
zhyncs committed
515
516


Lianmin Zheng's avatar
Lianmin Zheng committed
517
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
Lianmin Zheng's avatar
Lianmin Zheng committed
518
519


Lianmin Zheng's avatar
Lianmin Zheng committed
520
521
522
523
def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])
Lianmin Zheng's avatar
Lianmin Zheng committed
524

Lianmin Zheng's avatar
Lianmin Zheng committed
525
526
527
    # Check if the cache file already exists
    if os.path.exists(filename):
        return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
528

Lianmin Zheng's avatar
Lianmin Zheng committed
529
    print(f"Downloading from {url} to {filename}")
Lianmin Zheng's avatar
Lianmin Zheng committed
530

Lianmin Zheng's avatar
Lianmin Zheng committed
531
532
533
    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors
Lianmin Zheng's avatar
Lianmin Zheng committed
534

Lianmin Zheng's avatar
Lianmin Zheng committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
552
553


zhyncs's avatar
zhyncs committed
554
555
556
557
558
559
560
561
562
def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

Lianmin Zheng's avatar
Lianmin Zheng committed
563
    # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
564
565
    if not os.path.isfile(dataset_path):
        dataset_path = download_and_cache_file(SHAREGPT_URL)
zhyncs's avatar
zhyncs committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [
        (data["conversations"][0]["value"], data["conversations"][1]["value"])
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
Lianmin Zheng's avatar
Lianmin Zheng committed
589
        prompt_token_ids = tokenizer.encode(prompt)
zhyncs's avatar
zhyncs committed
590
        completion = dataset[i][1]
Lianmin Zheng's avatar
Lianmin Zheng committed
591
        completion_token_ids = tokenizer.encode(completion)
zhyncs's avatar
zhyncs committed
592
593
594
595
596
597
598
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
Lianmin Zheng's avatar
Lianmin Zheng committed
599
600
601
        if prompt_len > 1024 or (
            prompt_len + output_len > 2048 and fixed_output_len is None
        ):
zhyncs's avatar
zhyncs committed
602
603
604
605
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

606
607
    print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
zhyncs's avatar
zhyncs committed
608
609
610
    return filtered_dataset


611
612
613
614
615
616
def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
Lianmin Zheng's avatar
Lianmin Zheng committed
617
    dataset_path: str,
618
619
620
) -> List[Tuple[str, int, int]]:

    input_lens = np.random.randint(
Yineng Zhang's avatar
Yineng Zhang committed
621
        max(int(input_len * range_ratio), 1),
622
623
624
625
626
627
628
629
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
630
631
632
633
634

    if True:
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
635
636
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)
Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
        dataset = [data for data in dataset if len(data["conversations"]) >= 2]
        # Only keep the first two turns of each conversation.
        dataset = [
            (data["conversations"][0]["value"], data["conversations"][1]["value"])
            for data in dataset
        ]
        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[Tuple[str, int, int]] = []
653
654
655
656
657
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
658
            # Tokenize the prompts and completions.
659
            prompt = data[0]
Lianmin Zheng's avatar
Lianmin Zheng committed
660
            prompt_token_ids = tokenizer.encode(prompt)
Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
            prompt_len = len(prompt_token_ids)

663
664
665
666
            # Skip empty prompt
            if prompt_len == 0:
                continue

Yineng Zhang's avatar
Yineng Zhang committed
667
            if prompt_len > input_lens[i]:
Lianmin Zheng's avatar
Lianmin Zheng committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
686
687
688
689
690
691

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


692
693
694
695
696
697
698
def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


699
700
701
702
703
704
705
706
707
708
709
710
711
def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
        f"gen_prefix_{args.gen_num_groups}_{args.gen_prompts_per_group}_"
        f"{args.gen_system_prompt_len}_{args.gen_question_len}_{args.gen_output_len}_"
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


712
713
714
715
716
717
718
719
def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
720
721
722
723
724
725
726
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
727
728
            return pickle.load(f)

729
730
    print("\nGenerating new input data...")

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

748
    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
749
        system_prompt = system_prompts[group_idx]
750
751
752
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
753
754
755
756
757
758
759
760
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))

            input_requests.append((full_prompt, prompt_len, output_len))
            total_input_tokens += prompt_len
            total_output_tokens += output_len

761
762
763
764
    # Shuffle questions
    random.shuffle(input_requests)

    # Print statistics
765
766
767
768
769
770
771
772
773
774
775
776
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests)}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )
777
778
779
780
781
782

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)
783
784
785
786

    return input_requests


zhyncs's avatar
zhyncs committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
810
    backend: str,
zhyncs's avatar
zhyncs committed
811
) -> Tuple[BenchmarkMetrics, List[int]]:
Ying Sheng's avatar
Ying Sheng committed
812
813
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
zhyncs's avatar
zhyncs committed
814
815
816
817
818
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
zhyncs's avatar
zhyncs committed
819
    e2e_latencies: List[float] = []
zhyncs's avatar
zhyncs committed
820
821
    for i in range(len(outputs)):
        if outputs[i].success:
Ying Sheng's avatar
Ying Sheng committed
822
823
824
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
Lianmin Zheng's avatar
Lianmin Zheng committed
825
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
Ying Sheng's avatar
Ying Sheng committed
826
827
            )
            retokenized_output_lens.append(retokenized_output_len)
zhyncs's avatar
zhyncs committed
828
829
830
831
832
            total_input += input_requests[i][1]
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
zhyncs's avatar
zhyncs committed
833
834
835

            e2e_latencies.append(outputs[i].latency)

zhyncs's avatar
zhyncs committed
836
837
            completed += 1
        else:
Ying Sheng's avatar
Ying Sheng committed
838
839
            output_lens.append(0)
            retokenized_output_lens.append(0)
zhyncs's avatar
zhyncs committed
840
841
842
843
844
845
846
847
848
849

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
Ying Sheng's avatar
Ying Sheng committed
850
851
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
zhyncs's avatar
zhyncs committed
852
853
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
Ying Sheng's avatar
Ying Sheng committed
854
855
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
856
857
858
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
zhyncs's avatar
zhyncs committed
859
860
861
862
863
864
865
866
867
868
869
870
871
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
zhyncs's avatar
zhyncs committed
872
873
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
zhyncs's avatar
zhyncs committed
874
875
    )

Ying Sheng's avatar
Ying Sheng committed
876
    return metrics, output_lens
zhyncs's avatar
zhyncs committed
877
878
879
880
881


async def benchmark(
    backend: str,
    api_url: str,
882
    base_url: str,
zhyncs's avatar
zhyncs committed
883
884
885
886
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
887
    max_concurrency: Optional[int],
zhyncs's avatar
zhyncs committed
888
    disable_tqdm: bool,
889
    lora_name: str,
890
    extra_request_body: Dict[str, Any],
891
    profile: bool,
zhyncs's avatar
zhyncs committed
892
893
894
895
896
897
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

898
899
900
901
902
903
904
905
906
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

zhyncs's avatar
zhyncs committed
907
908
909
910
911
912
913
914
    print("Starting initial single prompt test run...")
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
        output_len=test_output_len,
915
        lora_name=lora_name,
916
        extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
917
918
919
920
921
922
923
924
925
926
    )
    test_output = await request_func(request_func_input=test_input)
    if not test_output.success:
        raise ValueError(
            "Initial test run failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {test_output.error}"
        )
    else:
        print("Initial test run completed. Starting main benchmark run...")

927
928
    time.sleep(1.5)

929
930
931
932
933
934
935
936
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

zhyncs's avatar
zhyncs committed
937
938
939
940
941
942
943
944
945
946
947
948
    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
949
            lora_name=lora_name,
950
            extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
951
952
953
        )
        tasks.append(
            asyncio.create_task(
954
                limited_request_func(request_func_input=request_func_input, pbar=pbar)
zhyncs's avatar
zhyncs committed
955
956
957
958
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

959
960
961
962
963
964
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

zhyncs's avatar
zhyncs committed
965
966
967
968
969
    if pbar is not None:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

Ying Sheng's avatar
Ying Sheng committed
970
    metrics, output_lens = calculate_metrics(
zhyncs's avatar
zhyncs committed
971
972
973
974
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
975
        backend=backend,
zhyncs's avatar
zhyncs committed
976
977
978
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
979
    print("{:<40} {:<10}".format("Backend:", backend))
zhyncs's avatar
zhyncs committed
980
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
981
982
983
984
985
986
    print(
        "{:<40} {:<10}".format(
            "Max reqeuest concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
zhyncs's avatar
zhyncs committed
987
988
989
990
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
Ying Sheng's avatar
Ying Sheng committed
991
992
993
994
995
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
zhyncs's avatar
zhyncs committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
1011
1012
1013
1014
1015
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
zhyncs's avatar
zhyncs committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
zhyncs's avatar
zhyncs committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
    print(
        "{s:{c}^{n}}".format(s="Time per Output Token (excl. 1st token)", n=50, c="-")
    )
    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
    print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms))
    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
    print("{s:{c}^{n}}".format(s="Inter-token Latency", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
    print("=" * 50)

zhyncs's avatar
zhyncs committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
1050
            "max_concurrency": max_concurrency,
1051
1052
1053
1054
1055
1056
1057
1058
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
            "median_ttft_ms": metrics.median_ttft_ms,
            "median_itl_ms": metrics.median_itl_ms,
            "output_throughput": metrics.output_throughput,
zhyncs's avatar
zhyncs committed
1059
1060
1061
1062
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
1063
1064
            "duration": benchmark_duration,
            "completed": metrics.completed,
zhyncs's avatar
zhyncs committed
1065
1066
1067
1068
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)
1069

zhyncs's avatar
zhyncs committed
1070
1071
1072
1073
1074
1075
1076
    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
        if args.dataset_name == "random":
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
1077
        else:
zhyncs's avatar
zhyncs committed
1078
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
1079

zhyncs's avatar
zhyncs committed
1080
1081
1082
    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")
1083

zhyncs's avatar
zhyncs committed
1084
1085
1086
1087
1088
    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
Ying Sheng's avatar
Ying Sheng committed
1089
        "total_output_tokens_retokenized": metrics.total_output_retokenized,
zhyncs's avatar
zhyncs committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        "request_throughput": metrics.request_throughput,
        "input_throughput": metrics.input_throughput,
        "output_throughput": metrics.output_throughput,
        "mean_ttft_ms": metrics.mean_ttft_ms,
        "median_ttft_ms": metrics.median_ttft_ms,
        "std_ttft_ms": metrics.std_ttft_ms,
        "p99_ttft_ms": metrics.p99_ttft_ms,
        "mean_tpot_ms": metrics.mean_tpot_ms,
        "median_tpot_ms": metrics.median_tpot_ms,
        "std_tpot_ms": metrics.std_tpot_ms,
        "p99_tpot_ms": metrics.p99_tpot_ms,
        "mean_itl_ms": metrics.mean_itl_ms,
        "median_itl_ms": metrics.median_itl_ms,
        "std_itl_ms": metrics.std_itl_ms,
        "p99_itl_ms": metrics.p99_itl_ms,
        "input_lens": [output.prompt_len for output in outputs],
Ying Sheng's avatar
Ying Sheng committed
1106
        "output_lens": output_lens,
zhyncs's avatar
zhyncs committed
1107
1108
1109
1110
        "ttfts": [output.ttft for output in outputs],
        "itls": [output.itl for output in outputs],
        "generated_texts": [output.generated_text for output in outputs],
        "errors": [output.error for output in outputs],
zhyncs's avatar
zhyncs committed
1111
1112
        "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
        "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
zhyncs's avatar
zhyncs committed
1113
1114
1115
1116
    }
    return result


1117
def parse_request_rate_range(request_rate_range):
zhyncs's avatar
zhyncs committed
1118
1119
1120
1121
1122
    if len(request_rate_range.split(",")) == 3:
        start, stop, step = map(int, request_rate_range.split(","))
        return list(range(start, stop, step))
    else:
        return list(map(int, request_rate_range.split(",")))
1123
1124


1125
1126
1127
1128
1129
1130
1131
1132
1133
def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


1134
1135
1136
1137
def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

1138
1139
1140
1141
    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

Lianmin Zheng's avatar
Lianmin Zheng committed
1142
    # Set global environments
1143
    set_ulimit()
zhyncs's avatar
zhyncs committed
1144
1145
1146
    random.seed(args.seed)
    np.random.seed(args.seed)

1147
1148
1149
1150
    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

Lianmin Zheng's avatar
Lianmin Zheng committed
1151
    # Set url
zhyncs's avatar
zhyncs committed
1152
1153
1154
    if args.port is None:
        args.port = {
            "sglang": 30000,
1155
1156
            "sglang-native": 30000,
            "sglang-oai": 30000,
zhyncs's avatar
zhyncs committed
1157
1158
            "lmdeploy": 23333,
            "vllm": 8000,
1159
            "trt": 8000,
1160
            "gserver": 9988,
1161
            "truss": 8080,
zhyncs's avatar
zhyncs committed
1162
1163
1164
1165
1166
1167
1168
1169
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
1183
1184
1185
1186
1187
1188
1189
1190
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
1191
    elif args.backend == "gserver":
Lianmin Zheng's avatar
Lianmin Zheng committed
1192
1193
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
1194
1195
1196
1197
1198
1199
    elif args.backend == "truss":
        api_url = (
            f"{args.base_url}/v1/models/model:predict"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/models/model:predict"
        )
1200
1201
1202
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )
1203

Lianmin Zheng's avatar
Lianmin Zheng committed
1204
    # Get model name
zhyncs's avatar
zhyncs committed
1205
    if args.model is None:
1206
1207
1208
1209
1210
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
zhyncs's avatar
zhyncs committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        try:
            response = requests.get(model_url)
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

1226
1227
1228
1229
1230
1231
    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

zhyncs's avatar
zhyncs committed
1232
1233
    print(f"{args}\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
1234
    # Read dataset
zhyncs's avatar
zhyncs committed
1235
1236
1237
1238
1239
1240
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model

    tokenizer = get_tokenizer(tokenizer_id)

1241
    input_requests = get_dataset(args, tokenizer)
zhyncs's avatar
zhyncs committed
1242

Lianmin Zheng's avatar
Lianmin Zheng committed
1243
1244
1245
1246
1247
    if not args.multi:
        return asyncio.run(
            benchmark(
                backend=backend,
                api_url=api_url,
1248
                base_url=base_url,
Lianmin Zheng's avatar
Lianmin Zheng committed
1249
1250
1251
1252
                model_id=model_id,
                tokenizer=tokenizer,
                input_requests=input_requests,
                request_rate=args.request_rate,
1253
                max_concurrency=args.max_concurrency,
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
                disable_tqdm=args.disable_tqdm,
1255
                lora_name=args.lora_name,
Lianmin Zheng's avatar
Lianmin Zheng committed
1256
                extra_request_body=extra_request_body,
1257
                profile=args.profile,
Lianmin Zheng's avatar
Lianmin Zheng committed
1258
1259
1260
1261
            )
        )
    else:
        # Benchmark multiple rps. TODO: use a fixed duration to compute num_prompts
1262
1263
1264
1265
1266
1267
1268
        request_rates = parse_request_rate_range(args.request_rate_range)

        for rate in request_rates:
            asyncio.run(
                benchmark(
                    backend=backend,
                    api_url=api_url,
1269
                    base_url=base_url,
1270
1271
1272
1273
                    model_id=model_id,
                    tokenizer=tokenizer,
                    input_requests=input_requests,
                    request_rate=rate,
1274
                    max_concurrency=args.max_concurrency,
1275
                    disable_tqdm=args.disable_tqdm,
1276
                    lora_name=args.lora_name,
1277
                    extra_request_body=extra_request_body,
1278
                    profile=args.profile,
1279
1280
                )
            )
zhyncs's avatar
zhyncs committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


if __name__ == "__main__":
1295
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
zhyncs's avatar
zhyncs committed
1296
1297
1298
1299
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
1300
        default="sglang",
zhyncs's avatar
zhyncs committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
1318
1319
1320
        "--dataset-name",
        type=str,
        default="sharegpt",
1321
        choices=["sharegpt", "random", "generated-shared-prefix"],
1322
1323
1324
1325
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
zhyncs's avatar
zhyncs committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
1349
1350
1351
    parser.add_argument(
        "--random-input-len",
        type=int,
1352
        default=1024,
1353
1354
1355
1356
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
1357
        default=1024,
1358
1359
1360
1361
1362
1363
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
Yineng Zhang's avatar
Yineng Zhang committed
1364
        default=0.0,
1365
1366
1367
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
zhyncs's avatar
zhyncs committed
1368
1369
1370
    parser.add_argument(
        "--request-rate",
        type=float,
1371
        default=float("inf"),
zhyncs's avatar
zhyncs committed
1372
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
min-xu-et's avatar
min-xu-et committed
1373
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
zhyncs's avatar
zhyncs committed
1374
    )
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
1388
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
1389
1390
1391
1392
1393
1394
1395
1396
1397
    parser.add_argument(
        "--multi",
        action="store_true",
        help="Use request rate range rather than single value.",
    )
    parser.add_argument(
        "--request-rate-range",
        type=str,
        default="2,34,2",
zhyncs's avatar
zhyncs committed
1398
        help="Range of request rates in the format start,stop,step. Default is 2,34,2. It also supports a list of request rates, requiring the parameters to not equal three.",
1399
1400
    )
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
1401
1402
1403
1404
1405
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
1406
1407
1408
1409
1410
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
1411
1412
1413
1414
1415
    parser.add_argument(
        "--disable-ignore-eos",
        action="store_true",
        help="Disable ignoring EOS.",
    )
1416
1417
1418
1419
1420
1421
1422
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
        "--gen-num-groups",
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gen-prompts-per-group",
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gen-system-prompt-len",
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gen-question-len",
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
        "--gen-output-len",
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
1455
1456
1457
1458
1459
1460
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
1461
1462
1463
1464
1465
1466
    parser.add_argument(
        "--lora-name",
        type=str,
        default=None,
        help="The name of LoRA adapter",
    )
zhyncs's avatar
zhyncs committed
1467
    args = parser.parse_args()
1468
    run_benchmark(args)