README.md 14.9 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
<div align="center">
<img src="assets/logo.png" alt="logo" width="400"></img>
</div>

--------------------------------------------------------------------------------

7
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

12
The core features include:
Lianmin Zheng's avatar
Lianmin Zheng committed
13
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
14
- **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone inference engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Lianmin Zheng's avatar
Lianmin Zheng committed
17
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
18
- [2024/01] 🔥 SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
Lianmin Zheng's avatar
Lianmin Zheng committed
19
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
20

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
## Contents
- [Install](#install)
- [Quick Start](#quick-start)
24
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
27
28
29
30
31
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
### Method 1: With pip
```
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
35

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
41
```
42
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
47
cd sglang

pip install --upgrade pip
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
51

Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
Ying Sheng's avatar
Ying Sheng committed
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
58
- If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html).
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
59

Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
62
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

63
64
### Using Local Models
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
65
```
66
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
```

69
70
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
71
```python
72
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
73
74
75
76
77
78
79
80
81

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

82
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
83
84
85
86
87
88
89
90

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
91
92

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
93
94
```

95
96
### Using OpenAI Models
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
97
```
98
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
99
100
```

101
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
102
```python
103
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
104
105
106
107
108
109
110
111
112

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

113
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
114
115
116
117
118
119
120
121

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
122
123

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
124
125
126
127
```

### More Examples

128
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
129
130
You can find more examples at [examples/quick_start](examples/quick_start).

131
## Frontend: Structured Generation Language (SGLang)
Lianmin Zheng's avatar
Lianmin Zheng committed
132

Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
137
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
138
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
139
140
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
141
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
142

143
144
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Lianmin Zheng's avatar
Lianmin Zheng committed
145
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
```python
@sgl.function
150
151
152
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
153
154
155

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
156
157
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
158
```
Lianmin Zheng's avatar
Lianmin Zheng committed
159
160

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
163
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
164
165
166
167
168
169
170
171
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
172
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
173
174
175
176
177
178
179
180
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
181
182

### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
185
186
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
187
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
188
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
189
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
190
191
```

192
193
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Lianmin Zheng's avatar
Lianmin Zheng committed
194
### Constrained Decoding
195
196
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
197

Lianmin Zheng's avatar
Lianmin Zheng committed
198
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
199
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
200
201
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
202
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
205
206
207
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
208

209
### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
210
Use `regex` to specify a JSON schema with a regular expression.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
232
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
233
234
235
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
236
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
237
238


Lianmin Zheng's avatar
Lianmin Zheng committed
239
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
240
241
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
242
243
244
245
246
247
248
249
250
251
252
253
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
254
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
255
256
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
257
258

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
261
262
263
264
265
266
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

267
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
268
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
269
270
271
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
272

Lianmin Zheng's avatar
Lianmin Zheng committed
273
274
275
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
276

Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
280
### Tips and Implementation Details
- The `choices` argument in `sgl.gen` is implemented by computing the normalized log probabilities of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex.

Lianmin Zheng's avatar
Lianmin Zheng committed
281
282
283
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
284
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
287
288
289
290
291
292
293

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
294
curl http://localhost:30000/generate \
Lianmin Zheng's avatar
Lianmin Zheng committed
295
296
  -H "Content-Type: application/json" \
  -d '{
297
    "text": "Once upon a time,",
298
    "sampling_params": {
299
300
301
      "max_new_tokens": 16,
      "temperature": 0
    }
Lianmin Zheng's avatar
Lianmin Zheng committed
302
303
  }'
```
304
305
Learn more about the argument format [here](docs/sampling_params.md).

306
307
308
309
310
311
312
### OpenAI Compatible API
In addition, the server supports an experimental OpenAI-compatible API.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
Cody Yu's avatar
Cody Yu committed
313
314

# Text completion
315
316
317
318
319
320
321
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)
Cody Yu's avatar
Cody Yu committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
336
337
338
339

By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.

If needed, you can also override the chat template when launching the server:
Cody Yu's avatar
Cody Yu committed
340
341

```
342
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template llama-2
Cody Yu's avatar
Cody Yu committed
343
344
345
```

If the chat template you are looking for is missing, you are welcome to contribute it.
Lianmin Zheng's avatar
Lianmin Zheng committed
346
Meanwhile, you can also temporarily register your chat template as follows:
Cody Yu's avatar
Cody Yu committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360

```json
{
  "name": "my_model",
  "system": "<|im_start|>system",
  "user": "<|im_start|>user",
  "assistant": "<|im_start|>assistant",
  "sep_style": "CHATML",
  "sep": "<|im_end|>",
  "stop_str": ["<|im_end|>", "<|im_start|>"]
}
```

```
361
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template ./my_model_template.json
362
363
```

Lianmin Zheng's avatar
Lianmin Zheng committed
364
365
366
367
368
### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Lianmin Zheng's avatar
Lianmin Zheng committed
369
370
371
372
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --dp 2 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
373
374
375
376
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
377
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
Lianmin Zheng's avatar
Lianmin Zheng committed
378
379
380
381
382

### Supported Models
- Llama
- Mistral
- Mixtral
Lianmin Zheng's avatar
Lianmin Zheng committed
383
- Qwen / Qwen 2
384
385
386
- Gemma
  - Please add a new flag `--attention-reduce-in-fp32` to avoid some precision errors.
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
Lianmin Zheng's avatar
Lianmin Zheng committed
387
- LLaVA
388
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
389
390
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 3000`
391
392
- LLaVA-NeXT-Video
  - see [srt_example_llava_v.sh](examples/usage/llava_video/srt_example_llava_v.sh)
Lianmin Zheng's avatar
Lianmin Zheng committed
393
394
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
395
396
397
398
399
400
- StableLM
- Command-R
- DBRX
- AWQ/GPTQ/Marlin quantization

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
401
402

## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
403
404
405
406
407
408
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
409
410
- Learn more about the above [results](docs/benchmark_results.md).
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
Lianmin Zheng's avatar
Lianmin Zheng committed
411

Lianmin Zheng's avatar
Lianmin Zheng committed
412
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
413
https://github.com/sgl-project/sglang/issues/157
Lianmin Zheng's avatar
Lianmin Zheng committed
414
415
416

## Citation And Acknowledgment
```
Lianmin Zheng's avatar
Lianmin Zheng committed
417
418
419
420
@misc{zheng2024sglang,
      title={SGLang: Efficient Execution of Structured Language Model Programs},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Chuyue Sun and Jeff Huang and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2024},
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
425
426
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

427
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).