README.md 18.1 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Ying Sheng's avatar
Ying Sheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
18

19
The core features include:
Ying Sheng's avatar
Ying Sheng committed
20
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
22

Ying Sheng's avatar
Ying Sheng committed
23
## News
Ying Sheng's avatar
Ying Sheng committed
24
25
26
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
27

Ying Sheng's avatar
Ying Sheng committed
28
29
30
<details>
<summary>More</summary>

Ying Sheng's avatar
Ying Sheng committed
31
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
39
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
43
44
45
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
### Method 1: With pip
```
48
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
49
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
50

Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
53
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
56
```
57
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
58
59
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
60
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
61
62
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
63
64
65
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
66

Lianmin Zheng's avatar
Lianmin Zheng committed
67
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
68
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
Ying Sheng's avatar
Ying Sheng committed
69
Repalce `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
70

Liangsheng Yin's avatar
Liangsheng Yin committed
71
72
73
74
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
75
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
76
77
    --ipc=host \
    lmsysorg/sglang:latest \
Ying Sheng's avatar
Ying Sheng committed
78
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
79
80
```

Lianmin Zheng's avatar
Lianmin Zheng committed
81
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
82
83
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
84

Ying Sheng's avatar
Ying Sheng committed
85
86
87
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
88
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
106
Learn more about the argument format [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Ying Sheng's avatar
Ying Sheng committed
138
It supports streaming, vision, and most features of the Chat/Completions/Models endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152

### Additional Server Arguments
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
153
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
154
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
155
156
```
# Node 0
157
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
158
159

# Node 1
160
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
161
```
162
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
163
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
164
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Ying Sheng's avatar
Ying Sheng committed
165

166
167
168
### Run Llama 3.1 405B

```bash
Ying Sheng's avatar
Ying Sheng committed
169
170
171
172
## Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

## Run 405B (fp16) on two nodes
Yineng Zhang's avatar
Yineng Zhang committed
173
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
Ying Sheng's avatar
Ying Sheng committed
174

175
176
177
178
179
180
181
# on the first node
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75

# on the second
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
```

Ying Sheng's avatar
Ying Sheng committed
182
183
### Supported Models

184
- Llama / Llama 2 / Llama 3 / Llama 3.1
Ying Sheng's avatar
Ying Sheng committed
185
186
187
- Mistral / Mixtral
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
188
- DeepSeek / DeepSeek 2
Ying Sheng's avatar
Ying Sheng committed
189
- LLaVA 1.5 / 1.6
Ying Sheng's avatar
Ying Sheng committed
190
191
192
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
Ying Sheng's avatar
Ying Sheng committed
193
- LLaVA-NeXT-Video
Ying Sheng's avatar
Ying Sheng committed
194
  - see [examples/usage/llava_video](examples/usage/llava_video)
Ying Sheng's avatar
Ying Sheng committed
195
196
197
198
199
200
201
202
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
zhyncs's avatar
zhyncs committed
203
- Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
204

205
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
206

Ying Sheng's avatar
Ying Sheng committed
207
208
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
209
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as those for `launch_server.py`. This is not a dynamic batching server, so it may run out of memory for a batch size that can run successfully with a real server. This is because a real server will truncate the prefill into several batches/chunks, while this unit test does not do this.
Ying Sheng's avatar
Ying Sheng committed
210
  ```
211
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
212
213
214
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
215
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
216
217
  ```

Ying Sheng's avatar
Ying Sheng committed
218
219
220
221
## Frontend: Structured Generation Language (SGLang)
The frontend language can be used with local models or API models.

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
222
223
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
224
#### Using Local Models
225
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
226
```
Ying Sheng's avatar
Ying Sheng committed
227
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
228
229
```

230
231
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
232
```python
233
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
234
235
236
237
238
239
240
241
242

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

243
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
246
247
248
249
250
251

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
252
253

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
254
255
```

Ying Sheng's avatar
Ying Sheng committed
256
#### Using OpenAI Models
257
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
258
```
259
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
260
261
```

262
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
263
```python
264
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
265
266
267
268
269
270
271
272
273

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

274
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
275
276
277
278
279
280
281
282

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
283
284

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
```

Ying Sheng's avatar
Ying Sheng committed
287
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
288

289
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
290
291
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
292
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
293
294
295
296
297
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
298
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
299
300
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
301
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
302

303
304
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
305
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
308
309
```python
@sgl.function
310
311
312
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314
315

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
316
317
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
318
```
Lianmin Zheng's avatar
Lianmin Zheng committed
319

Ying Sheng's avatar
Ying Sheng committed
320
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
323
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
326
327
328
329
330
331
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
332
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
333
334
335
336
337
338
339
340
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
341

Ying Sheng's avatar
Ying Sheng committed
342
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
343
344
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
347
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
348
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
349
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
350
351
```

352
353
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
354
#### Constrained Decoding
355
356
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
357

Lianmin Zheng's avatar
Lianmin Zheng committed
358
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
359
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
360
361
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
362
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
363
364
365
366
367
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
368

Ying Sheng's avatar
Ying Sheng committed
369
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
370
Use `regex` to specify a JSON schema with a regular expression.
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
392
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
393
394
395
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
396
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
397

Ying Sheng's avatar
Ying Sheng committed
398
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
399
400
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
401
402
403
404
405
406
407
408
409
410
411
412
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
413
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
414
415
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
416

Ying Sheng's avatar
Ying Sheng committed
417
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
420
421
422
423
424
425
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

426
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
427
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
428
429
430
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
431

Lianmin Zheng's avatar
Lianmin Zheng committed
432
433
434
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
454
#### Tips and Implementation Details
455
456
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
457

Lianmin Zheng's avatar
Lianmin Zheng committed
458

Ying Sheng's avatar
Ying Sheng committed
459
460
461
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
462

Ying Sheng's avatar
Ying Sheng committed
463
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
464

Lianmin Zheng's avatar
Lianmin Zheng committed
465
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
466
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
467
468

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
469
470
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).