README.md 15.2 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
<div align="center">
<img src="assets/logo.png" alt="logo" width="400"></img>
</div>

--------------------------------------------------------------------------------

7
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8

Ying Sheng's avatar
Ying Sheng committed
9
10
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
11

12
The core features include:
Ying Sheng's avatar
Ying Sheng committed
13
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, jump-forward constrained decoding, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
14
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Ying Sheng's avatar
Ying Sheng committed
17
- [2024/04] 🔥 SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
Lianmin Zheng's avatar
Lianmin Zheng committed
18
19
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
20

Ying Sheng's avatar
Ying Sheng committed
21
22
23
24
25
26
27
<details>
<summary>More</summary>

- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
28
29
30
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
31
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
35
36
37
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
38
39
40
### Method 1: With pip
```
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
41

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
45

Lianmin Zheng's avatar
Lianmin Zheng committed
46
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
47
```
48
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
52
cd sglang

pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
55
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
56

Lianmin Zheng's avatar
Lianmin Zheng committed
57
58
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
Ying Sheng's avatar
Ying Sheng committed
59

Liangsheng Yin's avatar
Liangsheng Yin committed
60
61
62
63
64
65
66
67
68
69
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=<secret>" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B --host 0.0.0.0 --port 30000
```

Lianmin Zheng's avatar
Lianmin Zheng committed
70
### Common Notes
71
72
73
74
75
- If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
```
pip uninstall -y triton triton-nightly
pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
```
Lianmin Zheng's avatar
Lianmin Zheng committed
76
77
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
78

Ying Sheng's avatar
Ying Sheng committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

### Launching a Server
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Learn more about the argument format [here](docs/sampling_params.md).

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

It supports streaming and most features of the Chat/Completions/Models endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).

### Additional Server Arguments
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-1` be the hostname of the first node and `50000` be an available port.
```
# Node 0
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-1:50000 --nnodes 2 --node-rank 0

# Node 1
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-1:50000 --nnodes 2 --node-rank 1
```
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/custom_chat_template.md).

### Supported Models

- Llama / Llama 2 / Llama 3
- Mistral / Mixtral
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
- LLaVA 1.5 / 1.6
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 3000`
- LLaVA-NeXT-Video
  - see [srt_example_llava_v.sh](examples/usage/llava_video/srt_example_llava_v.sh)
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).

## Frontend: Structured Generation Language (SGLang)
The frontend language can be used with local models or API models.

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
185
186
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
187
#### Using Local Models
188
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
189
```
Ying Sheng's avatar
Ying Sheng committed
190
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
191
192
```

193
194
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
195
```python
196
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
197
198
199
200
201
202
203
204
205

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

206
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
207
208
209
210
211
212
213
214

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
215
216

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
217
218
```

Ying Sheng's avatar
Ying Sheng committed
219
#### Using OpenAI Models
220
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
221
```
222
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
223
224
```

225
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
226
```python
227
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
228
229
230
231
232
233
234
235
236

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

237
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
238
239
240
241
242
243
244
245

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
246
247

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
248
249
```

Ying Sheng's avatar
Ying Sheng committed
250
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
251

252
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
253
254
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
255
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
256
257
258
259
260
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
261
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
262
263
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
264
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
265

266
267
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
268
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
269
270
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
271
272
```python
@sgl.function
273
274
275
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
278

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
279
280
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
281
```
Lianmin Zheng's avatar
Lianmin Zheng committed
282

Ying Sheng's avatar
Ying Sheng committed
283
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
284
285
286
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
292
293
294
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
295
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
298
299
300
301
302
303
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
304

Ying Sheng's avatar
Ying Sheng committed
305
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
308
309
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
310
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
311
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
312
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314
```

315
316
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
317
#### Constrained Decoding
318
319
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
320

Lianmin Zheng's avatar
Lianmin Zheng committed
321
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
322
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
325
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
326
327
328
329
330
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
331

Ying Sheng's avatar
Ying Sheng committed
332
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
333
Use `regex` to specify a JSON schema with a regular expression.
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
355
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
356
357
358
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
359
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
360

Ying Sheng's avatar
Ying Sheng committed
361
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
362
363
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
364
365
366
367
368
369
370
371
372
373
374
375
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
376
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
379

Ying Sheng's avatar
Ying Sheng committed
380
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
383
384
385
386
387
388
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

389
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
390
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
391
392
393
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
394

Lianmin Zheng's avatar
Lianmin Zheng committed
395
396
397
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
398

Ying Sheng's avatar
Ying Sheng committed
399
#### Tips and Implementation Details
400
401
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
402

Lianmin Zheng's avatar
Lianmin Zheng committed
403
## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
404
405
406
407
408
409
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
410
411
- Learn more about the above [results](docs/benchmark_results.md).
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
Lianmin Zheng's avatar
Lianmin Zheng committed
412

Lianmin Zheng's avatar
Lianmin Zheng committed
413
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
414
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
415
416

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
417
418
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).