offline_engine_api.ipynb 7.28 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Offline Engine API\n",
    "\n",
    "SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
    "\n",
    "- Offline Batch Inference\n",
    "- Custom Server on Top of the Engine\n",
    "\n",
    "This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
    "\n",
    "- Non-streaming synchronous generation\n",
    "- Streaming synchronous generation\n",
    "- Non-streaming asynchronous generation\n",
    "- Streaming asynchronous generation\n",
    "\n",
21
22
    "\n",
    "<span style=\"color:red\">**To launch the offline engine in your python scripts,** `__main__` **condition is necessary, since we use** `spawn` **mode to create subprocesses. Please refer to this** [simple example](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/launch_engine.py) **for more details.**</span>\n",
23
    "\n",
Chayenne's avatar
Chayenne committed
24
25
26
    "Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py)."
   ]
  },
27
28
29
30
31
32
33
34
35
36
37
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Advanced Usage\n",
    "\n",
    "The engine supports [vlm inference](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py) as well as [extracting hidden states](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/hidden_states.py). \n",
    "\n",
    "Please see [the examples](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine) for further use cases."
   ]
  },
Chayenne's avatar
Chayenne committed
38
39
40
41
42
43
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Batch Inference\n",
    "\n",
44
    "SGLang offline engine supports batch inference with efficient scheduling."
Chayenne's avatar
Chayenne committed
45
46
47
48
49
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
50
   "metadata": {},
Chayenne's avatar
Chayenne committed
51
52
53
54
   "outputs": [],
   "source": [
    "# launch the offline engine\n",
    "import asyncio\n",
55
56
57
58
59
60
61
62
    "import io\n",
    "import os\n",
    "\n",
    "from PIL import Image\n",
    "import requests\n",
    "import sglang as sgl\n",
    "\n",
    "from sglang.srt.conversation import chat_templates\n",
63
    "from sglang.test.test_utils import is_in_ci\n",
64
    "from sglang.utils import async_stream_and_merge, stream_and_merge\n",
65
66
67
68
    "\n",
    "if is_in_ci():\n",
    "    import patch\n",
    "\n",
69
    "\n",
Chayenne's avatar
Chayenne committed
70
71
72
73
74
75
76
77
78
79
80
81
82
    "llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
83
   "metadata": {},
Chayenne's avatar
Chayenne committed
84
85
86
87
88
89
90
91
92
93
94
95
96
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
97
98
    "    print(\"===============================\")\n",
    "    print(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
Chayenne's avatar
Chayenne committed
99
100
101
102
103
104
105
106
107
108
109
110
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
111
   "metadata": {},
Chayenne's avatar
Chayenne committed
112
113
114
   "outputs": [],
   "source": [
    "prompts = [\n",
115
116
117
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
118
119
    "]\n",
    "\n",
120
121
122
123
    "sampling_params = {\n",
    "    \"temperature\": 0.2,\n",
    "    \"top_p\": 0.9,\n",
    "}\n",
Chayenne's avatar
Chayenne committed
124
    "\n",
125
    "print(\"\\n=== Testing synchronous streaming generation with overlap removal ===\\n\")\n",
Chayenne's avatar
Chayenne committed
126
    "\n",
127
128
129
130
    "for prompt in prompts:\n",
    "    print(f\"Prompt: {prompt}\")\n",
    "    merged_output = stream_and_merge(llm, prompt, sampling_params)\n",
    "    print(\"Generated text:\", merged_output)\n",
Chayenne's avatar
Chayenne committed
131
132
133
134
135
136
137
138
139
140
141
142
143
    "    print()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
144
   "metadata": {},
Chayenne's avatar
Chayenne committed
145
146
147
   "outputs": [],
   "source": [
    "prompts = [\n",
148
149
150
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
151
152
153
154
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
155
    "print(\"\\n=== Testing asynchronous batch generation ===\")\n",
Chayenne's avatar
Chayenne committed
156
157
158
159
160
161
    "\n",
    "\n",
    "async def main():\n",
    "    outputs = await llm.async_generate(prompts, sampling_params)\n",
    "\n",
    "    for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
    "        print(f\"\\nPrompt: {prompt}\")\n",
    "        print(f\"Generated text: {output['text']}\")\n",
Chayenne's avatar
Chayenne committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
179
   "metadata": {},
Chayenne's avatar
Chayenne committed
180
181
182
   "outputs": [],
   "source": [
    "prompts = [\n",
183
184
185
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
186
    "]\n",
187
    "\n",
Chayenne's avatar
Chayenne committed
188
189
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
190
    "print(\"\\n=== Testing asynchronous streaming generation (no repeats) ===\")\n",
Chayenne's avatar
Chayenne committed
191
192
193
194
    "\n",
    "\n",
    "async def main():\n",
    "    for prompt in prompts:\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
195
    "        print(f\"\\nPrompt: {prompt}\")\n",
Chayenne's avatar
Chayenne committed
196
197
    "        print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
198
199
200
201
202
    "        # Replace direct calls to async_generate with our custom overlap-aware version\n",
    "        async for cleaned_chunk in async_stream_and_merge(llm, prompt, sampling_params):\n",
    "            print(cleaned_chunk, end=\"\", flush=True)\n",
    "\n",
    "        print()  # New line after each prompt\n",
Chayenne's avatar
Chayenne committed
203
204
205
206
207
208
209
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
210
211
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
228
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
229
230
231
232
233
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}