offline_engine_api.ipynb 7.23 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Offline Engine API\n",
    "\n",
    "SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
    "\n",
    "- Offline Batch Inference\n",
    "- Custom Server on Top of the Engine\n",
    "\n",
    "This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
    "\n",
    "- Non-streaming synchronous generation\n",
    "- Streaming synchronous generation\n",
    "- Non-streaming asynchronous generation\n",
    "- Streaming asynchronous generation\n",
    "\n",
21
    "**To launch the offline engine in your python scripts, `__main__` condition is necessary, since we use `spawn` mode to create subprocesses. Please refer to this [simple example](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/launch_engine.py) for more details.**\n",
22
    "\n",
Chayenne's avatar
Chayenne committed
23
24
25
    "Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py)."
   ]
  },
26
27
28
29
30
31
32
33
34
35
36
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Advanced Usage\n",
    "\n",
    "The engine supports [vlm inference](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py) as well as [extracting hidden states](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/hidden_states.py). \n",
    "\n",
    "Please see [the examples](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine) for further use cases."
   ]
  },
Chayenne's avatar
Chayenne committed
37
38
39
40
41
42
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Batch Inference\n",
    "\n",
43
    "SGLang offline engine supports batch inference with efficient scheduling."
Chayenne's avatar
Chayenne committed
44
45
46
47
48
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
49
   "metadata": {},
Chayenne's avatar
Chayenne committed
50
51
52
53
   "outputs": [],
   "source": [
    "# launch the offline engine\n",
    "import asyncio\n",
54
55
56
57
58
59
60
61
    "import io\n",
    "import os\n",
    "\n",
    "from PIL import Image\n",
    "import requests\n",
    "import sglang as sgl\n",
    "\n",
    "from sglang.srt.conversation import chat_templates\n",
62
    "from sglang.test.test_utils import is_in_ci\n",
63
    "from sglang.utils import async_stream_and_merge, stream_and_merge\n",
64
65
66
67
    "\n",
    "if is_in_ci():\n",
    "    import patch\n",
    "\n",
68
    "\n",
Chayenne's avatar
Chayenne committed
69
70
71
72
73
74
75
76
77
78
79
80
81
    "llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
82
   "metadata": {},
Chayenne's avatar
Chayenne committed
83
84
85
86
87
88
89
90
91
92
93
94
95
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
96
97
    "    print(\"===============================\")\n",
    "    print(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
Chayenne's avatar
Chayenne committed
98
99
100
101
102
103
104
105
106
107
108
109
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
110
   "metadata": {},
Chayenne's avatar
Chayenne committed
111
112
113
   "outputs": [],
   "source": [
    "prompts = [\n",
114
115
116
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
117
118
    "]\n",
    "\n",
119
120
121
122
    "sampling_params = {\n",
    "    \"temperature\": 0.2,\n",
    "    \"top_p\": 0.9,\n",
    "}\n",
Chayenne's avatar
Chayenne committed
123
    "\n",
124
    "print(\"\\n=== Testing synchronous streaming generation with overlap removal ===\\n\")\n",
Chayenne's avatar
Chayenne committed
125
    "\n",
126
127
128
129
    "for prompt in prompts:\n",
    "    print(f\"Prompt: {prompt}\")\n",
    "    merged_output = stream_and_merge(llm, prompt, sampling_params)\n",
    "    print(\"Generated text:\", merged_output)\n",
Chayenne's avatar
Chayenne committed
130
131
132
133
134
135
136
137
138
139
140
141
142
    "    print()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
143
   "metadata": {},
Chayenne's avatar
Chayenne committed
144
145
146
   "outputs": [],
   "source": [
    "prompts = [\n",
147
148
149
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
150
151
152
153
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    "print(\"\\n=== Testing asynchronous batch generation ===\")\n",
Chayenne's avatar
Chayenne committed
155
156
157
158
159
160
    "\n",
    "\n",
    "async def main():\n",
    "    outputs = await llm.async_generate(prompts, sampling_params)\n",
    "\n",
    "    for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
    "        print(f\"\\nPrompt: {prompt}\")\n",
    "        print(f\"Generated text: {output['text']}\")\n",
Chayenne's avatar
Chayenne committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
178
   "metadata": {},
Chayenne's avatar
Chayenne committed
179
180
181
   "outputs": [],
   "source": [
    "prompts = [\n",
182
183
184
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
185
    "]\n",
186
    "\n",
Chayenne's avatar
Chayenne committed
187
188
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
189
    "print(\"\\n=== Testing asynchronous streaming generation (no repeats) ===\")\n",
Chayenne's avatar
Chayenne committed
190
191
192
193
    "\n",
    "\n",
    "async def main():\n",
    "    for prompt in prompts:\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
194
    "        print(f\"\\nPrompt: {prompt}\")\n",
Chayenne's avatar
Chayenne committed
195
196
    "        print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
197
198
199
200
201
    "        # Replace direct calls to async_generate with our custom overlap-aware version\n",
    "        async for cleaned_chunk in async_stream_and_merge(llm, prompt, sampling_params):\n",
    "            print(cleaned_chunk, end=\"\", flush=True)\n",
    "\n",
    "        print()  # New line after each prompt\n",
Chayenne's avatar
Chayenne committed
202
203
204
205
206
207
208
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
209
210
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
227
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
228
229
230
231
232
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}