Unverified Commit 908dd7f9 authored by Chayenne's avatar Chayenne Committed by GitHub
Browse files

Add engine api (#1894)

parent f4cd8040
......@@ -41,7 +41,7 @@
")\n",
"\n",
"server_process = execute_shell_command(\n",
"\"\"\"\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --port=30010\n",
"\"\"\"\n",
")\n",
......
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Offline Engine API\n",
"\n",
"SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
"\n",
"- Offline Batch Inference\n",
"- Custom Server on Top of the Engine\n",
"\n",
"This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
"\n",
"- Non-streaming synchronous generation\n",
"- Streaming synchronous generation\n",
"- Non-streaming asynchronous generation\n",
"- Streaming asynchronous generation\n",
"\n",
"Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Offline Batch Inference\n",
"\n",
"SGLang offline engine supports batch inference with efficient scheduling to prevent OOM errors for large batches. For details on this cache-aware scheduling algorithm, see our [paper](https://arxiv.org/pdf/2312.07104)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# launch the offline engine\n",
"\n",
"import sglang as sgl\n",
"from sglang.utils import print_highlight\n",
"import asyncio\n",
"\n",
"llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Non-streaming Synchronous Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" \"Hello, my name is\",\n",
" \"The president of the United States is\",\n",
" \"The capital of France is\",\n",
" \"The future of AI is\",\n",
"]\n",
"\n",
"sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
"\n",
"outputs = llm.generate(prompts, sampling_params)\n",
"for prompt, output in zip(prompts, outputs):\n",
" print_highlight(\"===============================\")\n",
" print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Streaming Synchronous Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" \"Hello, my name is\",\n",
" \"The capital of France is\",\n",
" \"The future of AI is\",\n",
"]\n",
"sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
"\n",
"print_highlight(\"\\n=== Testing synchronous streaming generation ===\")\n",
"\n",
"for prompt in prompts:\n",
" print_highlight(f\"\\nPrompt: {prompt}\")\n",
" print(\"Generated text: \", end=\"\", flush=True)\n",
"\n",
" for chunk in llm.generate(prompt, sampling_params, stream=True):\n",
" print(chunk[\"text\"], end=\"\", flush=True)\n",
" print()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Non-streaming Asynchronous Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" \"Hello, my name is\",\n",
" \"The capital of France is\",\n",
" \"The future of AI is\",\n",
"]\n",
"\n",
"sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
"\n",
"print_highlight(\"\\n=== Testing asynchronous batch generation ===\")\n",
"\n",
"\n",
"async def main():\n",
" outputs = await llm.async_generate(prompts, sampling_params)\n",
"\n",
" for prompt, output in zip(prompts, outputs):\n",
" print_highlight(f\"\\nPrompt: {prompt}\")\n",
" print_highlight(f\"Generated text: {output['text']}\")\n",
"\n",
"\n",
"asyncio.run(main())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Streaming Asynchronous Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" \"Hello, my name is\",\n",
" \"The capital of France is\",\n",
" \"The future of AI is\",\n",
"]\n",
"sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
"\n",
"print_highlight(\"\\n=== Testing asynchronous streaming generation ===\")\n",
"\n",
"\n",
"async def main():\n",
" for prompt in prompts:\n",
" print_highlight(f\"\\nPrompt: {prompt}\")\n",
" print(\"Generated text: \", end=\"\", flush=True)\n",
"\n",
" generator = await llm.async_generate(prompt, sampling_params, stream=True)\n",
" async for chunk in generator:\n",
" print(chunk[\"text\"], end=\"\", flush=True)\n",
" print()\n",
"\n",
"\n",
"asyncio.run(main())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm.shutdown()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "AlphaMeemory",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
......@@ -113,10 +113,7 @@
"\n",
"response = requests.post(\n",
" \"http://localhost:30000/v1/embeddings\",\n",
" json={\n",
" \"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\",\n",
" \"input\": text\n",
" }\n",
" json={\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"input\": text},\n",
")\n",
"\n",
"text_embedding = response.json()[\"data\"][0][\"embedding\"]\n",
......
......@@ -126,20 +126,17 @@
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"What’s in this image?\"\n",
" },\n",
" {\"type\": \"text\", \"text\": \"What’s in this image?\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
" }\n",
" }\n",
" ]\n",
" },\n",
" },\n",
" ],\n",
" }\n",
" ],\n",
" \"max_tokens\": 300\n",
" \"max_tokens\": 300,\n",
"}\n",
"\n",
"response = requests.post(url, json=data)\n",
......
......@@ -27,6 +27,7 @@ The core features include:
backend/openai_api_vision.ipynb
backend/openai_api_embeddings.ipynb
backend/native_api.ipynb
backend/offline_engine_api.ipynb
backend/backend.md
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment