offline_engine_api.ipynb 5.53 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Offline Engine API\n",
    "\n",
    "SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
    "\n",
    "- Offline Batch Inference\n",
    "- Custom Server on Top of the Engine\n",
    "\n",
    "This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
    "\n",
    "- Non-streaming synchronous generation\n",
    "- Streaming synchronous generation\n",
    "- Non-streaming asynchronous generation\n",
    "- Streaming asynchronous generation\n",
    "\n",
    "Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Batch Inference\n",
    "\n",
30
    "SGLang offline engine supports batch inference with efficient scheduling."
Chayenne's avatar
Chayenne committed
31
32
33
34
35
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
36
   "metadata": {},
Chayenne's avatar
Chayenne committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
   "outputs": [],
   "source": [
    "# launch the offline engine\n",
    "\n",
    "import sglang as sgl\n",
    "from sglang.utils import print_highlight\n",
    "import asyncio\n",
    "\n",
    "llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
58
   "metadata": {},
Chayenne's avatar
Chayenne committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
    "    print_highlight(\"===============================\")\n",
    "    print_highlight(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
86
   "metadata": {},
Chayenne's avatar
Chayenne committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "print_highlight(\"\\n=== Testing synchronous streaming generation ===\")\n",
    "\n",
    "for prompt in prompts:\n",
    "    print_highlight(f\"\\nPrompt: {prompt}\")\n",
    "    print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
    "    for chunk in llm.generate(prompt, sampling_params, stream=True):\n",
    "        print(chunk[\"text\"], end=\"\", flush=True)\n",
    "    print()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
117
   "metadata": {},
Chayenne's avatar
Chayenne committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "print_highlight(\"\\n=== Testing asynchronous batch generation ===\")\n",
    "\n",
    "\n",
    "async def main():\n",
    "    outputs = await llm.async_generate(prompts, sampling_params)\n",
    "\n",
    "    for prompt, output in zip(prompts, outputs):\n",
    "        print_highlight(f\"\\nPrompt: {prompt}\")\n",
    "        print_highlight(f\"Generated text: {output['text']}\")\n",
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
152
   "metadata": {},
Chayenne's avatar
Chayenne committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "print_highlight(\"\\n=== Testing asynchronous streaming generation ===\")\n",
    "\n",
    "\n",
    "async def main():\n",
    "    for prompt in prompts:\n",
    "        print_highlight(f\"\\nPrompt: {prompt}\")\n",
    "        print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
    "        generator = await llm.async_generate(prompt, sampling_params, stream=True)\n",
    "        async for chunk in generator:\n",
    "            print(chunk[\"text\"], end=\"\", flush=True)\n",
    "        print()\n",
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
181
182
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
199
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
200
201
202
203
204
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}