"vscode:/vscode.git/clone" did not exist on "a5317b2fd3dd0bb7667bd9b6c646da8d2301a23b"
offline_engine_api.ipynb 7.56 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Offline Engine API\n",
    "\n",
    "SGLang provides a direct inference engine without the need for an HTTP server, especially for use cases where additional HTTP server adds unnecessary complexity or overhead. Here are two general use cases:\n",
    "\n",
    "- Offline Batch Inference\n",
    "- Custom Server on Top of the Engine\n",
    "\n",
    "This document focuses on the offline batch inference, demonstrating four different inference modes:\n",
    "\n",
    "- Non-streaming synchronous generation\n",
    "- Streaming synchronous generation\n",
    "- Non-streaming asynchronous generation\n",
    "- Streaming asynchronous generation\n",
    "\n",
    "Additionally, you can easily build a custom server on top of the SGLang offline engine. A detailed example working in a python script can be found in [custom_server](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/custom_server.py)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Offline Batch Inference\n",
    "\n",
30
    "SGLang offline engine supports batch inference with efficient scheduling."
Chayenne's avatar
Chayenne committed
31
32
33
34
35
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
36
   "metadata": {},
Chayenne's avatar
Chayenne committed
37
38
39
   "outputs": [],
   "source": [
    "# launch the offline engine\n",
40
    "from sglang.utils import stream_and_merge, async_stream_and_merge\n",
Chayenne's avatar
Chayenne committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    "import sglang as sgl\n",
    "import asyncio\n",
    "\n",
    "llm = sgl.Engine(model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
57
   "metadata": {},
Chayenne's avatar
Chayenne committed
58
59
60
61
62
63
64
65
66
67
68
69
70
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
    "    print(\"===============================\")\n",
    "    print(f\"Prompt: {prompt}\\nGenerated text: {output['text']}\")"
Chayenne's avatar
Chayenne committed
73
74
75
76
77
78
79
80
81
82
83
84
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Synchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
85
   "metadata": {},
Chayenne's avatar
Chayenne committed
86
87
88
   "outputs": [],
   "source": [
    "prompts = [\n",
89
90
91
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
92
93
    "]\n",
    "\n",
94
95
96
97
    "sampling_params = {\n",
    "    \"temperature\": 0.2,\n",
    "    \"top_p\": 0.9,\n",
    "}\n",
Chayenne's avatar
Chayenne committed
98
    "\n",
99
    "print(\"\\n=== Testing synchronous streaming generation with overlap removal ===\\n\")\n",
Chayenne's avatar
Chayenne committed
100
    "\n",
101
102
103
104
    "for prompt in prompts:\n",
    "    print(f\"Prompt: {prompt}\")\n",
    "    merged_output = stream_and_merge(llm, prompt, sampling_params)\n",
    "    print(\"Generated text:\", merged_output)\n",
Chayenne's avatar
Chayenne committed
105
106
107
108
109
110
111
112
113
114
115
116
117
    "    print()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Non-streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
118
   "metadata": {},
Chayenne's avatar
Chayenne committed
119
120
121
   "outputs": [],
   "source": [
    "prompts = [\n",
122
123
124
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
125
126
127
128
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
129
    "print(\"\\n=== Testing asynchronous batch generation ===\")\n",
Chayenne's avatar
Chayenne committed
130
131
132
133
134
135
    "\n",
    "\n",
    "async def main():\n",
    "    outputs = await llm.async_generate(prompts, sampling_params)\n",
    "\n",
    "    for prompt, output in zip(prompts, outputs):\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
136
137
    "        print(f\"\\nPrompt: {prompt}\")\n",
    "        print(f\"Generated text: {output['text']}\")\n",
Chayenne's avatar
Chayenne committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Streaming Asynchronous Generation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
153
   "metadata": {},
Chayenne's avatar
Chayenne committed
154
155
156
   "outputs": [],
   "source": [
    "prompts = [\n",
157
158
159
    "    \"Write a short, neutral self-introduction for a fictional character. Hello, my name is\",\n",
    "    \"Provide a concise factual statement about France’s capital city. The capital of France is\",\n",
    "    \"Explain possible future trends in artificial intelligence. The future of AI is\",\n",
Chayenne's avatar
Chayenne committed
160
    "]\n",
161
    "\n",
Chayenne's avatar
Chayenne committed
162
163
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95}\n",
    "\n",
164
    "print(\"\\n=== Testing asynchronous streaming generation (no repeats) ===\")\n",
Chayenne's avatar
Chayenne committed
165
166
167
168
    "\n",
    "\n",
    "async def main():\n",
    "    for prompt in prompts:\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
169
    "        print(f\"\\nPrompt: {prompt}\")\n",
Chayenne's avatar
Chayenne committed
170
171
    "        print(\"Generated text: \", end=\"\", flush=True)\n",
    "\n",
172
173
174
175
176
    "        # Replace direct calls to async_generate with our custom overlap-aware version\n",
    "        async for cleaned_chunk in async_stream_and_merge(llm, prompt, sampling_params):\n",
    "            print(cleaned_chunk, end=\"\", flush=True)\n",
    "\n",
    "        print()  # New line after each prompt\n",
Chayenne's avatar
Chayenne committed
177
178
179
180
181
    "\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Return Hidden States"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sglang as sgl\n",
    "\n",
    "llm = sgl.Engine(\n",
    "    model_path=\"meta-llama/Meta-Llama-3.1-8B-Instruct\", return_hidden_states=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts = [\n",
    "    \"Hello, my name is\",\n",
    "    \"The president of the United States is\",\n",
    "    \"The capital of France is\",\n",
    "    \"The future of AI is\",\n",
    "]\n",
    "\n",
    "sampling_params = {\"temperature\": 0.8, \"top_p\": 0.95, \"max_new_tokens\": 10}\n",
    "\n",
    "outputs = llm.generate(prompts, sampling_params=sampling_params)\n",
    "for prompt, output in zip(prompts, outputs):\n",
    "    print(\"===============================\")\n",
    "    print(\n",
    "        f\"Prompt: {prompt}\\nGenerated text: {output['text']}\\nPrompt_Tokens: {output['meta_info']['prompt_tokens']}\\tCompletion_tokens: {output['meta_info']['completion_tokens']}\\nHidden states: {[i.shape for i in output['meta_info']['hidden_states']]}\"\n",
    "    )\n",
    "    print()"
   ]
  },
Chayenne's avatar
Chayenne committed
235
236
  {
   "cell_type": "code",
237
238
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
   "outputs": [],
   "source": [
    "llm.shutdown()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
255
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
256
257
258
259
260
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}