README.md 18.2 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Ying Sheng's avatar
Ying Sheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
Lianmin Zheng's avatar
Lianmin Zheng committed
18

19
The core features include:
Ying Sheng's avatar
Ying Sheng committed
20
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
Lianmin Zheng's avatar
Lianmin Zheng committed
21
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
22

Ying Sheng's avatar
Ying Sheng committed
23
## News
Ying Sheng's avatar
Ying Sheng committed
24
25
26
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
27

Ying Sheng's avatar
Ying Sheng committed
28
29
30
<details>
<summary>More</summary>

Ying Sheng's avatar
Ying Sheng committed
31
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
39
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
43
44
45
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
### Method 1: With pip
```
48
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
49
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
50

Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
53
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
56
```
Yineng Zhang's avatar
Yineng Zhang committed
57
58
# Use the stable release branch
git clone -b release https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
61
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
66
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
67

Lianmin Zheng's avatar
Lianmin Zheng committed
68
### Method 3: Using docker
Ying Sheng's avatar
Ying Sheng committed
69
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
Ying Sheng's avatar
Ying Sheng committed
70
Repalce `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
71

Liangsheng Yin's avatar
Liangsheng Yin committed
72
73
74
75
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
76
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
    --ipc=host \
    lmsysorg/sglang:latest \
Ying Sheng's avatar
Ying Sheng committed
79
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
80
81
```

Lianmin Zheng's avatar
Lianmin Zheng committed
82
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
83
84
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
85

Ying Sheng's avatar
Ying Sheng committed
86
87
88
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
89
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
107
Learn more about the argument format [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Ying Sheng's avatar
Ying Sheng committed
139
It supports streaming, vision, and most features of the Chat/Completions/Models endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153

### Additional Server Arguments
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
154
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
155
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
Ying Sheng's avatar
Ying Sheng committed
156
157
```
# Node 0
158
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
159
160

# Node 1
161
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
162
```
163
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
164
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
165
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Ying Sheng's avatar
Ying Sheng committed
166

167
168
169
### Run Llama 3.1 405B

```bash
Ying Sheng's avatar
Ying Sheng committed
170
171
172
173
## Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

## Run 405B (fp16) on two nodes
Yineng Zhang's avatar
Yineng Zhang committed
174
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
Ying Sheng's avatar
Ying Sheng committed
175

176
177
178
179
180
181
182
# on the first node
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75

# on the second
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
```

Ying Sheng's avatar
Ying Sheng committed
183
184
### Supported Models

185
- Llama / Llama 2 / Llama 3 / Llama 3.1
Ying Sheng's avatar
Ying Sheng committed
186
187
188
- Mistral / Mixtral
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
189
- DeepSeek / DeepSeek 2
Ying Sheng's avatar
Ying Sheng committed
190
- LLaVA 1.5 / 1.6
Ying Sheng's avatar
Ying Sheng committed
191
192
193
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
Ying Sheng's avatar
Ying Sheng committed
194
- LLaVA-NeXT-Video
Ying Sheng's avatar
Ying Sheng committed
195
  - see [examples/usage/llava_video](examples/usage/llava_video)
Ying Sheng's avatar
Ying Sheng committed
196
197
198
199
200
201
202
203
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
zhyncs's avatar
zhyncs committed
204
- Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
205

206
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
207

Ying Sheng's avatar
Ying Sheng committed
208
209
### Benchmark Performance

Ying Sheng's avatar
Ying Sheng committed
210
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as those for `launch_server.py`. This is not a dynamic batching server, so it may run out of memory for a batch size that can run successfully with a real server. This is because a real server will truncate the prefill into several batches/chunks, while this unit test does not do this.
Ying Sheng's avatar
Ying Sheng committed
211
  ```
212
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
213
214
215
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
216
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
217
218
  ```

Ying Sheng's avatar
Ying Sheng committed
219
220
221
222
## Frontend: Structured Generation Language (SGLang)
The frontend language can be used with local models or API models.

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
223
224
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
225
#### Using Local Models
226
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
227
```
Ying Sheng's avatar
Ying Sheng committed
228
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
229
230
```

231
232
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
233
```python
234
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
235
236
237
238
239
240
241
242
243

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

244
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
245
246
247
248
249
250
251
252

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
253
254

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
255
256
```

Ying Sheng's avatar
Ying Sheng committed
257
#### Using OpenAI Models
258
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
259
```
260
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
261
262
```

263
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
264
```python
265
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
266
267
268
269
270
271
272
273
274

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

275
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
278
279
280
281
282
283

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
284
285

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
286
287
```

Ying Sheng's avatar
Ying Sheng committed
288
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
289

290
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
291
292
You can find more examples at [examples/quick_start](examples/quick_start).

Ying Sheng's avatar
Ying Sheng committed
293
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
294
295
296
297
298
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
299
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
300
301
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
302
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
303

304
305
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Ying Sheng's avatar
Ying Sheng committed
306
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
309
310
```python
@sgl.function
311
312
313
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
316

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
317
318
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
319
```
Lianmin Zheng's avatar
Lianmin Zheng committed
320

Ying Sheng's avatar
Ying Sheng committed
321
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
322
323
324
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
325
326
327
328
329
330
331
332
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
333
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
334
335
336
337
338
339
340
341
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
342

Ying Sheng's avatar
Ying Sheng committed
343
#### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
344
345
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
348
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
349
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
350
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
```

353
354
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Ying Sheng's avatar
Ying Sheng committed
355
#### Constrained Decoding
356
357
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
358

Lianmin Zheng's avatar
Lianmin Zheng committed
359
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
360
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
361
362
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
363
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
364
365
366
367
368
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
369

Ying Sheng's avatar
Ying Sheng committed
370
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
371
Use `regex` to specify a JSON schema with a regular expression.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
393
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
394
395
396
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
397
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
398

Ying Sheng's avatar
Ying Sheng committed
399
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
400
401
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
402
403
404
405
406
407
408
409
410
411
412
413
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
414
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
415
416
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
417

Ying Sheng's avatar
Ying Sheng committed
418
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
419
420
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
425
426
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

427
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
428
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
431
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
432

Lianmin Zheng's avatar
Lianmin Zheng committed
433
434
435
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
455
#### Tips and Implementation Details
456
457
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
458

Lianmin Zheng's avatar
Lianmin Zheng committed
459

Ying Sheng's avatar
Ying Sheng committed
460
461
462
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
463

Ying Sheng's avatar
Ying Sheng committed
464
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
465

Lianmin Zheng's avatar
Lianmin Zheng committed
466
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
467
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
Lianmin Zheng's avatar
Lianmin Zheng committed
468
469

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
470
471
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).