README.md 15.3 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
<div align="center">
<img src="assets/logo.png" alt="logo" width="400"></img>
</div>

--------------------------------------------------------------------------------

7
| [**Blog**](https://lmsys.org/blog/2024-01-17-sglang/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
Lianmin Zheng's avatar
Lianmin Zheng committed
8
9
10
11

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

12
The core features include:
Lianmin Zheng's avatar
Lianmin Zheng committed
13
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
14
- **High-Performance Backend Runtime**: Features RadixAttention for accelerating complex LLM programs by reusing the KV cache across multiple calls. It can also serve as a standalone inference engine with all common techniques implemented (e.g., continuous batching and tensor parallelism).
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
## News
Lianmin Zheng's avatar
Lianmin Zheng committed
17
- [2024/02] 🔥 SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
18
- [2024/01] 🔥 SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
Lianmin Zheng's avatar
Lianmin Zheng committed
19
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
20

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
## Contents
- [Install](#install)
- [Quick Start](#quick-start)
24
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
27
28
29
30
31
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
### Method 1: With pip
```
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
35

Lianmin Zheng's avatar
Lianmin Zheng committed
36
37
38
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
39

Lianmin Zheng's avatar
Lianmin Zheng committed
40
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
41
```
42
git clone https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
47
cd sglang

pip install --upgrade pip
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
```
51

Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
Ying Sheng's avatar
Ying Sheng committed
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
### Common Notes
56
57
58
59
60
- If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
```
pip uninstall -y triton triton-nightly
pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
```
Lianmin Zheng's avatar
Lianmin Zheng committed
61
62
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
63

Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
66
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

67
68
### Using Local Models
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
69
```
70
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
```

73
74
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
75
```python
76
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
77
78
79
80
81
82
83
84
85

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

86
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
90
91
92
93
94

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
95
96

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
97
98
```

99
100
### Using OpenAI Models
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
101
```
102
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
```

105
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
106
```python
107
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
108
109
110
111
112
113
114
115
116

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

117
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
118
119
120
121
122
123
124
125

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
126
127

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
130
131
```

### More Examples

132
Anthropic and VertexAI (Gemini) models are also supported.
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
You can find more examples at [examples/quick_start](examples/quick_start).

135
## Frontend: Structured Generation Language (SGLang)
Lianmin Zheng's avatar
Lianmin Zheng committed
136

Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
139
140
141
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
142
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
143
144
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
145
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
146

147
148
The complete code for the examples below can be found at [readme_examples.py](examples/usage/readme_examples.py)

Lianmin Zheng's avatar
Lianmin Zheng committed
149
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
150
151
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
```python
@sgl.function
154
155
156
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
157
158
159

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
160
161
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
162
```
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
165
166
167
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
168
169
170
171
172
173
174
175
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
176
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
177
178
179
180
181
182
183
184
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
185
186

### Multi Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
187
188
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
189
190
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
191
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
192
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
193
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
194
195
```

196
197
See also [srt_example_llava.py](examples/quick_start/srt_example_llava.py).

Lianmin Zheng's avatar
Lianmin Zheng committed
198
### Constrained Decoding
199
200
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
201

Lianmin Zheng's avatar
Lianmin Zheng committed
202
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
203
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
204
205
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
206
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
207
208
209
210
211
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
212

213
### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
214
Use `regex` to specify a JSON schema with a regular expression.
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
236
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
237
238
239
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
240
See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
241
242


Lianmin Zheng's avatar
Lianmin Zheng committed
243
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
246
247
248
249
250
251
252
253
254
255
256
257
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
258
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
261
262

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
263
264
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
265
266
267
268
269
270
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

271
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
272
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
273
274
275
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
276

Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
279
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
280

Lianmin Zheng's avatar
Lianmin Zheng committed
281
### Tips and Implementation Details
282
283
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
284

Lianmin Zheng's avatar
Lianmin Zheng committed
285
286
287
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
288
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
289
290
291
292
293
294
295
296
297

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
298
curl http://localhost:30000/generate \
Lianmin Zheng's avatar
Lianmin Zheng committed
299
300
  -H "Content-Type: application/json" \
  -d '{
301
    "text": "Once upon a time,",
302
    "sampling_params": {
303
304
305
      "max_new_tokens": 16,
      "temperature": 0
    }
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
  }'
```
308
309
Learn more about the argument format [here](docs/sampling_params.md).

310
311
312
313
314
315
316
### OpenAI Compatible API
In addition, the server supports an experimental OpenAI-compatible API.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
Cody Yu's avatar
Cody Yu committed
317
318

# Text completion
319
320
321
322
323
324
325
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)
Cody Yu's avatar
Cody Yu committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
```

Lianmin Zheng's avatar
Lianmin Zheng committed
340
341
342
By default, the server uses the chat template specified in the model tokenizer from Hugging Face. It should just work for most official models such as Llama-2/Llama-3.

If needed, you can also override the chat template when launching the server:
Cody Yu's avatar
Cody Yu committed
343
344

```
345
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template llama-2
Cody Yu's avatar
Cody Yu committed
346
347
348
```

If the chat template you are looking for is missing, you are welcome to contribute it.
Lianmin Zheng's avatar
Lianmin Zheng committed
349
Meanwhile, you can also temporarily register your chat template as follows:
Cody Yu's avatar
Cody Yu committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363

```json
{
  "name": "my_model",
  "system": "<|im_start|>system",
  "user": "<|im_start|>user",
  "assistant": "<|im_start|>assistant",
  "sep_style": "CHATML",
  "sep": "<|im_end|>",
  "stop_str": ["<|im_end|>", "<|im_start|>"]
}
```

```
364
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --chat-template ./my_model_template.json
365
366
```

Lianmin Zheng's avatar
Lianmin Zheng committed
367
### Additional Arguments
368
- Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
Lianmin Zheng's avatar
Lianmin Zheng committed
369
370
371
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Lianmin Zheng's avatar
Lianmin Zheng committed
372
373
374
375
- Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --dp 2 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
376
377
378
379
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
380
- See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
383
384
385

### Supported Models
- Llama
- Mistral
- Mixtral
386
387
- Qwen / Qwen 2 / Qwen 2 MoE
- Gemma / Gemma 2
388
  - `python -m sglang.launch_server --model-path google/gemma-7b-it --port 30000 --attention-reduce-in-fp32`
Lianmin Zheng's avatar
Lianmin Zheng committed
389
- LLaVA
390
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
391
392
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 3000`
393
394
- LLaVA-NeXT-Video
  - see [srt_example_llava_v.sh](examples/usage/llava_video/srt_example_llava_v.sh)
Lianmin Zheng's avatar
Lianmin Zheng committed
395
396
- Yi-VL
  - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
397
398
399
- StableLM
- Command-R
- DBRX
400
401
- Grok
- ChatGLM
402
403
404
- AWQ/GPTQ/Marlin quantization

Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
405
406

## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
407
408
409
410
411
412
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
413
414
- Learn more about the above [results](docs/benchmark_results.md).
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
Lianmin Zheng's avatar
Lianmin Zheng committed
415

Lianmin Zheng's avatar
Lianmin Zheng committed
416
## Roadmap
Ying Sheng's avatar
Ying Sheng committed
417
https://github.com/sgl-project/sglang/issues/157
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
420

## Citation And Acknowledgment
```
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
@misc{zheng2024sglang,
      title={SGLang: Efficient Execution of Structured Language Model Programs},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Chuyue Sun and Jeff Huang and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2024},
Lianmin Zheng's avatar
Lianmin Zheng committed
425
426
427
428
429
430
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

431
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).