Unverified Commit 7a80f565 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Support dynamically rebalancing experts using EPLB (#6469)

parent 9484eba4
import logging
import time
from typing import TYPE_CHECKING
import torch.cuda
from sglang.srt.managers.expert_distribution import (
get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ExpertLocationMetadata
if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
logger = logging.getLogger(__name__)
class EPLBManager:
def __init__(self, model_runner: "ModelRunner"):
super().__init__()
self._model_runner = model_runner
self._server_args = model_runner.server_args
# Otherwise, the circular buffer will contain stale data. If the case is needed, it can be implemented.
assert (
self._server_args.eplb_rebalance_num_iterations
<= self._server_args.expert_distribution_recorder_buffer_size
), "eplb_rebalance_num_iterations must be less than expert_distribution_recorder_buffer_size"
get_global_expert_distribution_recorder().start_record()
logger.info(
f"[EPLBManager] system started, will rebalance per {self._server_args.eplb_rebalance_num_iterations} iterations."
)
def on_forward_pass_end(self, forward_pass_id: int):
if forward_pass_id % self._server_args.eplb_rebalance_num_iterations == 0:
self.rebalance()
def rebalance(self):
logger.info("[EPLBManager] rebalance start")
torch.cuda.synchronize()
time_start = time.time()
logical_count = get_global_expert_distribution_recorder().dump_record(
output_mode="object"
)["logical_count"]
expert_location_metadata = ExpertLocationMetadata.init_by_eplb(
self._server_args, self._model_runner.model_config, logical_count
)
self._model_runner.update_expert_location(expert_location_metadata)
torch.cuda.synchronize()
time_end = time.time()
logger.info(f"[EPLBManager] rebalance end time={time_end - time_start:.3f}s")
......@@ -95,6 +95,8 @@ def update_expert_weights_single_layer(
tensor.shape[0] == num_local_physical_experts
for tensor in routed_experts_weights
), f"{num_local_physical_experts=} {[x.shape for x in routed_experts_weights]=}"
assert isinstance(old_physical_to_logical_map, list)
assert isinstance(new_physical_to_logical_map, list)
output_logs = [] if debug else None
......
......@@ -51,6 +51,7 @@ from sglang.srt.layers.quantization.deep_gemm import (
from sglang.srt.layers.sampler import Sampler
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
from sglang.srt.lora.lora_manager import LoRAManager
from sglang.srt.managers.eplb_manager import EPLBManager
from sglang.srt.managers.expert_distribution import (
ExpertDistributionRecorder,
get_global_expert_distribution_recorder,
......@@ -255,6 +256,12 @@ class ModelRunner:
)
)
self.eplb_manager = (
EPLBManager(self)
if self.server_args.enable_eplb and (not self.is_draft_worker)
else None
)
# Load the model
self.sampler = Sampler()
self.load_model()
......@@ -1152,10 +1159,15 @@ class ModelRunner:
self.forward_pass_id,
forward_batch,
):
return self._forward_raw(
output = self._forward_raw(
forward_batch, skip_attn_backend_init, pp_proxy_tensors
)
if self.eplb_manager is not None:
self.eplb_manager.on_forward_pass_end(self.forward_pass_id)
return output
def _forward_raw(
self,
forward_batch: ForwardBatch,
......
......@@ -173,6 +173,8 @@ class ServerArgs:
ep_num_redundant_experts: int = 0
ep_dispatch_algorithm: Optional[Literal["static", "dynamic"]] = None
init_expert_location: str = "trivial"
enable_eplb: bool = False
eplb_rebalance_num_iterations: int = 1000
expert_distribution_recorder_mode: Optional[
Literal["stat", "per_pass", "per_token"]
] = None
......@@ -1293,6 +1295,17 @@ class ServerArgs:
default=ServerArgs.init_expert_location,
help="Initial location of EP experts.",
)
parser.add_argument(
"--enable-eplb",
action="store_true",
help="Enable EPLB algorithm",
)
parser.add_argument(
"--eplb-rebalance-num-iterations",
type=int,
default=ServerArgs.eplb_rebalance_num_iterations,
help="Number of iterations to automatically trigger a EPLB re-balance.",
)
parser.add_argument(
"--expert-distribution-recorder-mode",
type=str,
......
import os
import tempfile
import unittest
from pathlib import Path
from types import SimpleNamespace
import sglang as sgl
from sglang.srt.managers.expert_distribution_storage import ExpertDistributionStorage
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MLA_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestDynamicEPLB(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MLA_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--trust-remote-code",
"--tp",
"2",
"--dp",
"2",
"--enable-dp-attention",
"--enable-deepep-moe",
"--deepep-mode",
"normal",
"--disable-cuda-graph",
"--enable-eplb",
"--ep-num-redundant-experts",
"4",
"--eplb-rebalance-num-iterations",
"50",
"--expert-distribution-recorder-buffer-size",
"50",
# TODO pr-chain: enable later
# "--enable-expert-distribution-metrics",
# TODO auto determine these flags
"--expert-distribution-recorder-mode",
"stat",
"--ep-dispatch-algorithm",
"static",
],
env={"SGL_ENABLE_JIT_DEEPGEMM": "0", **os.environ},
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
)
metrics = run_eval(args)
self.assertGreater(metrics["score"], 0.5)
class TestStaticEPLB(CustomTestCase):
def test_save_expert_distribution_and_init_expert_location(self):
os.environ["SGL_ENABLE_JIT_DEEPGEMM"] = "0"
with tempfile.TemporaryDirectory() as tmp_dir:
engine_kwargs = dict(
model_path=DEFAULT_MLA_MODEL_NAME_FOR_TEST,
trust_remote_code=True,
ep_num_redundant_experts=4,
enable_dp_attention=True,
enable_deepep_moe=True,
deepep_mode="normal",
disable_cuda_graph=True,
expert_distribution_recorder_mode="stat",
tp_size=2,
dp_size=2,
log_level="info",
# TODO pr-chain: enable later
# enable_expert_distribution_metrics=True,
)
print(f"Action: start engine")
os.environ["SGLANG_EXPERT_DISTRIBUTION_RECORDER_DIR"] = tmp_dir
engine = sgl.Engine(
**engine_kwargs,
disable_overlap_schedule=True,
)
engine.start_expert_distribution_record()
self._assert_engine_generate_correct(engine)
print(f"Action: dump_expert_distribution_record")
engine.dump_expert_distribution_record()
snapshot_path = list(Path(tmp_dir).glob("*.pt"))[0]
assert snapshot_path is not None
print(f"{snapshot_path=}")
print(f"Action: shutdown engine")
engine.shutdown()
del engine
print(f"Action: start engine with init_expert_location")
engine = sgl.Engine(
**engine_kwargs,
init_expert_location=str(snapshot_path),
port=21000,
# TODO auto determine these flags
ep_dispatch_algorithm="static",
)
self._assert_engine_generate_correct(engine)
print(f"Action: shutdown engine")
engine.shutdown()
del engine
def _assert_engine_generate_correct(self, engine: sgl.Engine):
output = engine.generate(
prompt=["1+1=2, 2+2=4", "One plus one is two, two plus two is four"],
sampling_params=dict(max_new_tokens=8, temperature=0.0),
)
print(f"engine.generate {output=}")
self.assertEqual(
[x["text"] for x in output],
[", 4+4=8,", ", four plus four is eight, eight"],
)
if __name__ == "__main__":
unittest.main()
......@@ -210,8 +210,8 @@ def _execute_test(info: _TestInfo, rank: int, num_gpus: int, device: str):
temp_buffers=expert_location_updater.create_temp_buffers(
routed_experts_weights
),
old_physical_to_logical_map=physical_to_logical_map,
new_physical_to_logical_map=new_physical_to_logical_map,
old_physical_to_logical_map=physical_to_logical_map.tolist(),
new_physical_to_logical_map=new_physical_to_logical_map.tolist(),
num_local_physical_experts=num_local_physical_experts,
num_gpu_per_node=num_gpu_per_node,
rank=rank,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment