model.py 18.7 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
2
import glob
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
35
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
36

37
38
39
40
41
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
42

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
43
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
44
45
46
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

helloyongyang's avatar
helloyongyang committed
47
    def __init__(self, model_path, config, device):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
48
        super().__init__()
helloyongyang's avatar
helloyongyang committed
49
50
        self.model_path = model_path
        self.config = config
51
52
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
helloyongyang's avatar
helloyongyang committed
53
54
55
56
57

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
58

59
60
61
62
63
        if self.config.get("lora_configs") and self.config.lora_configs:
            self.init_empty_model = True
        else:
            self.init_empty_model = False

gushiqiao's avatar
gushiqiao committed
64
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
65
        self.dit_quantized = self.config.get("dit_quantized", False)
66
        if self.dit_quantized:
67
            assert self.config.get("dit_quant_scheme", "Default") in ["Default-Force-FP32", "fp8-vllm", "int8-vllm", "fp8-q8f", "int8-q8f", "fp8-b128-deepgemm", "fp8-sgl", "int8-sgl", "int8-torchao"]
gushiqiao's avatar
gushiqiao committed
68
        self.device = device
helloyongyang's avatar
helloyongyang committed
69
70
71
72
73
74
75
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
76
77

        if self.config["feature_caching"] == "NoCaching":
78
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
93
94
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
95
        else:
helloyongyang's avatar
helloyongyang committed
96
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
97

gushiqiao's avatar
gushiqiao committed
98
99
100
101
102
103
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
104
105
106
107
108
109
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
110
111
112
                return True
        return False

113
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
114
115
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []

116
117
118
119
        if self.device.type == "cuda" and dist.is_initialized():
            device = torch.device("cuda:{}".format(dist.get_rank()))
        else:
            device = self.device
120

121
        with safe_open(file_path, framework="pt", device=str(device)) as f:
122
123
124
125
126
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE()))
                for key in f.keys()
                if not any(remove_key in key for remove_key in remove_keys)
            }
helloyongyang's avatar
helloyongyang committed
127

128
    def _load_ckpt(self, unified_dtype, sensitive_layer):
129
130
131
132
133
134
135
136
137
        if self.config.get("dit_original_ckpt", None):
            safetensors_path = self.config["dit_original_ckpt"]
        else:
            safetensors_path = self.model_path

        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
138

helloyongyang's avatar
helloyongyang committed
139
140
        weight_dict = {}
        for file_path in safetensors_files:
141
            if self.config.get("adapter_model_path", None) is not None:
142
                if self.config["adapter_model_path"] == file_path:
143
                    continue
144
            logger.info(f"Loading weights from {file_path}")
145
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
146
            weight_dict.update(file_weights)
147

helloyongyang's avatar
helloyongyang committed
148
149
        return weight_dict

150
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
151
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []
gushiqiao's avatar
Fix  
gushiqiao committed
152

153
154
155
156
        if self.config.get("dit_quantized_ckpt", None):
            safetensors_path = self.config["dit_quantized_ckpt"]
        else:
            safetensors_path = self.model_path
gushiqiao's avatar
Fix  
gushiqiao committed
157

158
159
160
161
        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
gushiqiao's avatar
Fix  
gushiqiao committed
162
163

        weight_dict = {}
164
165
166
167
        for safetensor_path in safetensors_files:
            if self.config.get("adapter_model_path", None) is not None:
                if self.config["adapter_model_path"] == safetensor_path:
                    continue
gushiqiao's avatar
Fix  
gushiqiao committed
168
169
170
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
171
172
                    if any(remove_key in k for remove_key in remove_keys):
                        continue
173
174
175
176
177
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
178
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
179
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
180
                        else:
gushiqiao's avatar
gushiqiao committed
181
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
182
                    else:
gushiqiao's avatar
gushiqiao committed
183
                        weight_dict[k] = f.get_tensor(k).to(self.device)
184

185
186
        return weight_dict

187
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):  # Need rewrite
gushiqiao's avatar
gushiqiao committed
188
        lazy_load_model_path = self.dit_quantized_ckpt
189
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
190
        pre_post_weight_dict = {}
191
192

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
193
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
194
            for k in f.keys():
195
196
197
198
199
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
200
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
201
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
202
                    else:
gushiqiao's avatar
gushiqiao committed
203
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
204
                else:
gushiqiao's avatar
gushiqiao committed
205
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
206

gushiqiao's avatar
gushiqiao committed
207
        return pre_post_weight_dict
208

209
210
211
212
213
214
215
216
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
217
    def _init_weights(self, weight_dict=None):
218
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
219
        # Some layers run with float32 to achieve high accuracy
220
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
221
222
223
224
225
226
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
227
228
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
229
        }
230

lijiaqi2's avatar
lijiaqi2 committed
231
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
232
            is_weight_loader = self._should_load_weights()
233
            if is_weight_loader:
234
                if not self.dit_quantized:
gushiqiao's avatar
gushiqiao committed
235
236
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
237
                else:
gushiqiao's avatar
gushiqiao committed
238
                    # Load quantized weights
239
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
240
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
241
                    else:
gushiqiao's avatar
gushiqiao committed
242
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
243

244
245
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
246

247
248
249
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
250
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
251
252
        else:
            self.original_weight_dict = weight_dict
253

gushiqiao's avatar
gushiqiao committed
254
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
255
256
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
257
258
        if not self.init_empty_model:
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
259

260
261
262
263
264
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
265
        # Load weights into containers
266
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
267
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
268

gushiqiao's avatar
gushiqiao committed
269
270
271
272
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

273
274
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
327
328

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
329

gushiqiao's avatar
gushiqiao committed
330
331
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
332
333
334
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
335
        self.transformer_infer = self.transformer_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
336
337
338

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
339
340
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
341
342
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
343
344
345
346
347
348
349
350
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
351
352
    @torch.no_grad()
    def infer(self, inputs):
353
        if self.cpu_offload:
354
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config["model_cls"]:
355
356
357
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
358
                self.transformer_weights.non_block_weights_to_cuda()
359

360
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
361
362
363
364
365
366
367
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
368
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
369
                else:
helloyongyang's avatar
helloyongyang committed
370
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
371

helloyongyang's avatar
helloyongyang committed
372
373
374
375
376
377
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
378
379
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
380

helloyongyang's avatar
helloyongyang committed
381
382
383
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
384
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
385
386

        if self.cpu_offload:
387
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config["model_cls"]:
388
389
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
390
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
391
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
392

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
393
    @compiled_method()
394
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
395
396
397
398
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
399
400
401
402
403
404
405
406
407

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
408
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
409
410
411
412
413
414
415
416
417

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
418
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
419
420
421
422
423
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
424
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
425

helloyongyang's avatar
helloyongyang committed
426
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
427

428
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] in ["i2v", "s2v"]:
helloyongyang's avatar
helloyongyang committed
429
430
431
432
433
434
435
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
436
437
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
438
439
440
441
442
443
444
445
446

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
447
        return combined_output