model.py 18.3 KB
Newer Older
1
import json
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
import torch
5
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
6
import torch.nn.functional as F
PengGao's avatar
PengGao committed
7
8
9
from loguru import logger
from safetensors import safe_open

helloyongyang's avatar
helloyongyang committed
10
from lightx2v.common.ops.attn import MaskMap
11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
32
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
33
)
34
from lightx2v.utils.envs import *
35
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
36

37
38
39
40
41
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
42
43
44
45
46
47

class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

helloyongyang's avatar
helloyongyang committed
48
    def __init__(self, model_path, config, device):
helloyongyang's avatar
helloyongyang committed
49
50
        self.model_path = model_path
        self.config = config
51
52
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
helloyongyang's avatar
helloyongyang committed
53
54
55
56
57

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
58

gushiqiao's avatar
gushiqiao committed
59
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
60
        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
61

gushiqiao's avatar
gushiqiao committed
62
63
        if self.dit_quantized:
            dit_quant_scheme = self.config.mm_config.get("mm_type").split("-")[1]
gushiqiao's avatar
gushiqiao committed
64
65
            if self.config.model_cls == "wan2.1_distill":
                dit_quant_scheme = "distill_" + dit_quant_scheme
66
67
68
69
            if dit_quant_scheme == "gguf":
                self.dit_quantized_ckpt = find_gguf_model_path(config, "dit_quantized_ckpt", subdir=dit_quant_scheme)
                self.config.use_gguf = True
            else:
70
71
72
73
74
75
                self.dit_quantized_ckpt = find_hf_model_path(
                    config,
                    self.model_path,
                    "dit_quantized_ckpt",
                    subdir=dit_quant_scheme,
                )
gushiqiao's avatar
Fix bug  
gushiqiao committed
76
77
78
79
80
            quant_config_path = os.path.join(self.dit_quantized_ckpt, "config.json")
            if os.path.exists(quant_config_path):
                with open(quant_config_path, "r") as f:
                    quant_model_config = json.load(f)
                self.config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
81
82
        else:
            self.dit_quantized_ckpt = None
83
84
            assert not self.config.get("lazy_load", False)

gushiqiao's avatar
gushiqiao committed
85
        self.config.dit_quantized_ckpt = self.dit_quantized_ckpt
gushiqiao's avatar
gushiqiao committed
86

87
88
89
90
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
91
        self.device = device
helloyongyang's avatar
helloyongyang committed
92
93
94
95
96
97
98
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
99
100

        if self.config["feature_caching"] == "NoCaching":
101
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
116
117
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
118
        else:
helloyongyang's avatar
helloyongyang committed
119
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
120

gushiqiao's avatar
gushiqiao committed
121
122
123
124
125
126
127
128
129
130
131
132
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
            # Multi-GPU mode, only rank 0 loads
            if dist.get_rank() == 0:
                logger.info(f"Loading weights from {self.model_path}")
                return True
        return False

133
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
134
        with safe_open(file_path, framework="pt") as f:
135
136
137
138
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE())).pin_memory().to(self.device)
                for key in f.keys()
            }
helloyongyang's avatar
helloyongyang committed
139

140
    def _load_ckpt(self, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
141
        safetensors_path = find_hf_model_path(self.config, self.model_path, "dit_original_ckpt", subdir="original")
142
        safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
helloyongyang's avatar
helloyongyang committed
143
144
        weight_dict = {}
        for file_path in safetensors_files:
145
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
146
147
148
            weight_dict.update(file_weights)
        return weight_dict

149
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
150
        ckpt_path = self.dit_quantized_ckpt
151
        logger.info(f"Loading quant dit model from {ckpt_path}")
152

gushiqiao's avatar
Fix  
gushiqiao committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
169
170
171
172
173
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
174
175
                        if unified_dtype or all(s not in k for s in sensitive_layer):
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
176
                        else:
177
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
178
179
                    else:
                        weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
180

181
182
        return weight_dict

183
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
184
        lazy_load_model_path = self.dit_quantized_ckpt
185
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
186
        pre_post_weight_dict = {}
187
188

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
189
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
190
            for k in f.keys():
191
192
193
194
195
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
196
197
                    if unified_dtype or all(s not in k for s in sensitive_layer):
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
198
                    else:
199
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
200
201
                else:
                    pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
202

gushiqiao's avatar
gushiqiao committed
203
        return pre_post_weight_dict
204

205
206
207
208
209
210
211
212
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
213
    def _init_weights(self, weight_dict=None):
214
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
215
        # Some layers run with float32 to achieve high accuracy
216
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
217
218
219
220
221
222
223
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
        }
224

lijiaqi2's avatar
lijiaqi2 committed
225
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
226
            is_weight_loader = self._should_load_weights()
227
228
            if is_weight_loader:
                if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
gushiqiao committed
229
230
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
231
                else:
gushiqiao's avatar
gushiqiao committed
232
                    # Load quantized weights
233
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
234
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
235
                    else:
gushiqiao's avatar
gushiqiao committed
236
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
237

gushiqiao's avatar
gushiqiao committed
238
            if self.config.get("device_mesh") is not None:
gushiqiao's avatar
gushiqiao committed
239
                weight_dict = self._load_weights_distribute(weight_dict, is_weight_loader)
240

gushiqiao's avatar
gushiqiao committed
241
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
242
243
        else:
            self.original_weight_dict = weight_dict
244

gushiqiao's avatar
gushiqiao committed
245
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
246
247
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
gushiqiao's avatar
gushiqiao committed
248
249

        # Load weights into containers
250
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
251
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
252

gushiqiao's avatar
gushiqiao committed
253
    def _load_weights_distribute(self, weight_dict, is_weight_loader):
gushiqiao's avatar
gushiqiao committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
306
307
308
309

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
310
311
312
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
313
        self.transformer_infer = self.transformer_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
314
315
316

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
317
318
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
319
320
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
321
322
323
324
325
326
327
328
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
329
330
    @torch.no_grad()
    def infer(self, inputs):
331
332
333
334
335
        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == 0:
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
336
                self.transformer_weights.post_weights_to_cuda()
337

338
339
340
341
342
        if self.transformer_infer.mask_map is None:
            _, c, h, w = self.scheduler.latents.shape
            video_token_num = c * (h // 2) * (w // 2)
            self.transformer_infer.mask_map = MaskMap(video_token_num, c)

343
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
344
345
346
347
348
349
350
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
351
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
352
                else:
helloyongyang's avatar
helloyongyang committed
353
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
354

helloyongyang's avatar
helloyongyang committed
355
356
357
358
359
360
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
361
362
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
363

helloyongyang's avatar
helloyongyang committed
364
365
366
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
367
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
368
369
370
371
372

        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1:
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
373
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
374
                self.transformer_weights.post_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
375

helloyongyang's avatar
helloyongyang committed
376
    @torch.compile(disable=not CHECK_ENABLE_GRAPH_MODE())
377
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
378
379
380
381
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
382
383
384
385
386
387
388
389
390

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
391
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
392
393
394
395
396
397
398
399
400

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
401
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
402
403
404
405
406
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
407
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
408

helloyongyang's avatar
helloyongyang committed
409
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
410
411
412
413
414
415
416
417
418

        if self.config["model_cls"] == "wan2.2" and self.config["task"] == "i2v":
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
419
420
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
421
422
423
424
425
426
427
428
429

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
430
        return combined_output