model.py 17.8 KB
Newer Older
1
import json
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
import torch
5
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
6
import torch.nn.functional as F
PengGao's avatar
PengGao committed
7
8
9
from loguru import logger
from safetensors import safe_open

helloyongyang's avatar
helloyongyang committed
10
from lightx2v.common.ops.attn import MaskMap
11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
    WanTransformerInferFirstBlock,
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
29
)
30
from lightx2v.utils.envs import *
31
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
32

33
34
35
36
37
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
38
39
40
41
42
43

class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

helloyongyang's avatar
helloyongyang committed
44
    def __init__(self, model_path, config, device):
helloyongyang's avatar
helloyongyang committed
45
46
        self.model_path = model_path
        self.config = config
47
48
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
helloyongyang's avatar
helloyongyang committed
49
50
51
52
53

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
54

gushiqiao's avatar
gushiqiao committed
55
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
56
        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
57

gushiqiao's avatar
gushiqiao committed
58
59
        if self.dit_quantized:
            dit_quant_scheme = self.config.mm_config.get("mm_type").split("-")[1]
gushiqiao's avatar
gushiqiao committed
60
61
            if self.config.model_cls == "wan2.1_distill":
                dit_quant_scheme = "distill_" + dit_quant_scheme
62
63
64
65
            if dit_quant_scheme == "gguf":
                self.dit_quantized_ckpt = find_gguf_model_path(config, "dit_quantized_ckpt", subdir=dit_quant_scheme)
                self.config.use_gguf = True
            else:
helloyongyang's avatar
helloyongyang committed
66
                self.dit_quantized_ckpt = find_hf_model_path(config, self.model_path, "dit_quantized_ckpt", subdir=dit_quant_scheme)
gushiqiao's avatar
Fix bug  
gushiqiao committed
67
68
69
70
71
            quant_config_path = os.path.join(self.dit_quantized_ckpt, "config.json")
            if os.path.exists(quant_config_path):
                with open(quant_config_path, "r") as f:
                    quant_model_config = json.load(f)
                self.config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
72
73
        else:
            self.dit_quantized_ckpt = None
74
75
            assert not self.config.get("lazy_load", False)

gushiqiao's avatar
gushiqiao committed
76
        self.config.dit_quantized_ckpt = self.dit_quantized_ckpt
gushiqiao's avatar
gushiqiao committed
77

78
79
80
81
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
82
        self.device = device
helloyongyang's avatar
helloyongyang committed
83
84
85
86
87
88
89
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
helloyongyang's avatar
helloyongyang committed
107
        else:
helloyongyang's avatar
helloyongyang committed
108
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
109

gushiqiao's avatar
gushiqiao committed
110
111
112
113
114
115
116
117
118
119
120
121
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
            # Multi-GPU mode, only rank 0 loads
            if dist.get_rank() == 0:
                logger.info(f"Loading weights from {self.model_path}")
                return True
        return False

122
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
123
        with safe_open(file_path, framework="pt") as f:
124
125
126
127
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE())).pin_memory().to(self.device)
                for key in f.keys()
            }
helloyongyang's avatar
helloyongyang committed
128

129
    def _load_ckpt(self, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
130
        safetensors_path = find_hf_model_path(self.config, self.model_path, "dit_original_ckpt", subdir="original")
131
        safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
helloyongyang's avatar
helloyongyang committed
132
133
        weight_dict = {}
        for file_path in safetensors_files:
134
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
135
136
137
            weight_dict.update(file_weights)
        return weight_dict

138
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
139
        ckpt_path = self.dit_quantized_ckpt
140
        logger.info(f"Loading quant dit model from {ckpt_path}")
141

gushiqiao's avatar
Fix  
gushiqiao committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
158
                    if f.get_tensor(k).dtype in [torch.float16, torch.bfloat16, torch.float]:
159
160
                        if unified_dtype or all(s not in k for s in sensitive_layer):
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
161
                        else:
162
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
163
164
                    else:
                        weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
165

166
167
        return weight_dict

168
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
169
        lazy_load_model_path = self.dit_quantized_ckpt
170
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
171
        pre_post_weight_dict = {}
172
173

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
174
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
175
            for k in f.keys():
176
                if f.get_tensor(k).dtype in [torch.float16, torch.bfloat16, torch.float]:
177
178
                    if unified_dtype or all(s not in k for s in sensitive_layer):
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
179
                    else:
180
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
181
182
                else:
                    pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
183

gushiqiao's avatar
gushiqiao committed
184
        return pre_post_weight_dict
185

186
187
188
189
190
191
192
193
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
194
    def _init_weights(self, weight_dict=None):
195
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
196
        # Some layers run with float32 to achieve high accuracy
197
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
198
199
200
201
202
203
204
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
        }
205

lijiaqi2's avatar
lijiaqi2 committed
206
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
207
            is_weight_loader = self._should_load_weights()
208
209
            if is_weight_loader:
                if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
gushiqiao committed
210
211
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
212
                else:
gushiqiao's avatar
gushiqiao committed
213
                    # Load quantized weights
214
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
215
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
216
                    else:
gushiqiao's avatar
gushiqiao committed
217
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
218

gushiqiao's avatar
gushiqiao committed
219
            if self.config.get("device_mesh") is not None:
gushiqiao's avatar
gushiqiao committed
220
                weight_dict = self._load_weights_distribute(weight_dict, is_weight_loader)
221

gushiqiao's avatar
gushiqiao committed
222
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
223
224
        else:
            self.original_weight_dict = weight_dict
225

gushiqiao's avatar
gushiqiao committed
226
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
227
        self.pre_weight = self.pre_weight_class(self.config)
TorynCurtis's avatar
TorynCurtis committed
228
        self.post_weight = self.post_weight_class(self.config)
helloyongyang's avatar
helloyongyang committed
229
        self.transformer_weights = self.transformer_weight_class(self.config)
gushiqiao's avatar
gushiqiao committed
230
231

        # Load weights into containers
232
233
        self.pre_weight.load(self.original_weight_dict)
        self.post_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
234
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
235

gushiqiao's avatar
gushiqiao committed
236
    def _load_weights_distribute(self, weight_dict, is_weight_loader):
gushiqiao's avatar
gushiqiao committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
289
290
291
292

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
293
294
295
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
296
        self.transformer_infer = self.transformer_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
297
298
299

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
300
301
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
302
303
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
304
305
306
307
308
309
310
311
312
313
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
314
315
    @torch.no_grad()
    def infer(self, inputs):
316
317
318
319
320
321
322
        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == 0:
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
                self.post_weight.to_cuda()

323
324
325
326
327
        if self.transformer_infer.mask_map is None:
            _, c, h, w = self.scheduler.latents.shape
            video_token_num = c * (h // 2) * (w // 2)
            self.transformer_infer.mask_map = MaskMap(video_token_num, c)

328
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
329
330
331
332
333
334
335
336
337
338
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
                    noise_pred = self._infer_cond_uncond(inputs, positive=True)
                else:
                    noise_pred = self._infer_cond_uncond(inputs, positive=False)
helloyongyang's avatar
helloyongyang committed
339

helloyongyang's avatar
helloyongyang committed
340
341
342
343
344
345
346
347
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
                noise_pred_cond = self._infer_cond_uncond(inputs, positive=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, positive=False)
gushiqiao's avatar
gushiqiao committed
348

helloyongyang's avatar
helloyongyang committed
349
350
351
352
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, positive=True)
353
354
355
356
357

        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1:
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
358
359
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
360

361
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def _infer_cond_uncond(self, inputs, positive=True):
        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=positive)

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

        noise_pred = self.post_infer.infer(self.post_weight, x, pre_infer_out)[0]

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
383
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
384
385
386
387
388
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
389
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
390

helloyongyang's avatar
helloyongyang committed
391
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
392
393
394
395
396
397
398
399
400

        if self.config["model_cls"] == "wan2.2" and self.config["task"] == "i2v":
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
401
402
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
403
404
405
406
407
408
409
410
411

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
412
        return combined_output