model.py 19.2 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
2
import json
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
35
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
36

37
38
39
40
41
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
42

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
43
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
44
45
46
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

helloyongyang's avatar
helloyongyang committed
47
    def __init__(self, model_path, config, device):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
48
        super().__init__()
helloyongyang's avatar
helloyongyang committed
49
50
        self.model_path = model_path
        self.config = config
51
52
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
helloyongyang's avatar
helloyongyang committed
53
54
55
56
57

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
58

59
60
61
62
63
        if self.config.get("lora_configs") and self.config.lora_configs:
            self.init_empty_model = True
        else:
            self.init_empty_model = False

gushiqiao's avatar
gushiqiao committed
64
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
65
        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
66

gushiqiao's avatar
gushiqiao committed
67
68
        if self.dit_quantized:
            dit_quant_scheme = self.config.mm_config.get("mm_type").split("-")[1]
gushiqiao's avatar
gushiqiao committed
69
70
            if self.config.model_cls == "wan2.1_distill":
                dit_quant_scheme = "distill_" + dit_quant_scheme
71
72
73
74
            if dit_quant_scheme == "gguf":
                self.dit_quantized_ckpt = find_gguf_model_path(config, "dit_quantized_ckpt", subdir=dit_quant_scheme)
                self.config.use_gguf = True
            else:
75
76
77
78
79
80
                self.dit_quantized_ckpt = find_hf_model_path(
                    config,
                    self.model_path,
                    "dit_quantized_ckpt",
                    subdir=dit_quant_scheme,
                )
gushiqiao's avatar
Fix bug  
gushiqiao committed
81
82
83
84
85
            quant_config_path = os.path.join(self.dit_quantized_ckpt, "config.json")
            if os.path.exists(quant_config_path):
                with open(quant_config_path, "r") as f:
                    quant_model_config = json.load(f)
                self.config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
86
87
        else:
            self.dit_quantized_ckpt = None
88
89
            assert not self.config.get("lazy_load", False)

90
91
92
93
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
94
        self.device = device
helloyongyang's avatar
helloyongyang committed
95
96
97
98
99
100
101
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
102
103

        if self.config["feature_caching"] == "NoCaching":
104
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
119
120
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
121
        else:
helloyongyang's avatar
helloyongyang committed
122
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
123

gushiqiao's avatar
gushiqiao committed
124
125
126
127
128
129
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
130
131
132
133
134
135
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
136
137
138
                return True
        return False

139
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
140
141
142
143
144
        if self.device.type == "cuda" and dist.is_initialized():
            device = torch.device("cuda:{}".format(dist.get_rank()))
        else:
            device = self.device
        with safe_open(file_path, framework="pt", device=str(device)) as f:
gushiqiao's avatar
gushiqiao committed
145
            return {key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE())) for key in f.keys()}
helloyongyang's avatar
helloyongyang committed
146

147
    def _load_ckpt(self, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
148
        safetensors_path = find_hf_model_path(self.config, self.model_path, "dit_original_ckpt", subdir="original")
149
        safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
150

helloyongyang's avatar
helloyongyang committed
151
152
        weight_dict = {}
        for file_path in safetensors_files:
153
154
155
            if self.config.get("adapter_model_path", None) is not None:
                if self.config.adapter_model_path == file_path:
                    continue
156
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
157
158
159
            weight_dict.update(file_weights)
        return weight_dict

160
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
161
        ckpt_path = self.dit_quantized_ckpt
gushiqiao's avatar
Fix  
gushiqiao committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
178
179
180
181
182
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
183
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
184
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
185
                        else:
gushiqiao's avatar
gushiqiao committed
186
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
187
                    else:
gushiqiao's avatar
gushiqiao committed
188
                        weight_dict[k] = f.get_tensor(k).to(self.device)
189

190
191
        return weight_dict

192
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
193
        lazy_load_model_path = self.dit_quantized_ckpt
194
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
195
        pre_post_weight_dict = {}
196
197

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
198
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
199
            for k in f.keys():
200
201
202
203
204
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
205
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
206
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
207
                    else:
gushiqiao's avatar
gushiqiao committed
208
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
209
                else:
gushiqiao's avatar
gushiqiao committed
210
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
211

gushiqiao's avatar
gushiqiao committed
212
        return pre_post_weight_dict
213

214
215
216
217
218
219
220
221
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
222
    def _init_weights(self, weight_dict=None):
223
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
224
        # Some layers run with float32 to achieve high accuracy
225
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
226
227
228
229
230
231
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
232
233
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
234
        }
235

lijiaqi2's avatar
lijiaqi2 committed
236
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
237
            is_weight_loader = self._should_load_weights()
238
239
            if is_weight_loader:
                if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
gushiqiao committed
240
241
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
242
                else:
gushiqiao's avatar
gushiqiao committed
243
                    # Load quantized weights
244
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
245
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
246
                    else:
gushiqiao's avatar
gushiqiao committed
247
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
248

249
250
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
251

252
253
254
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
255
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
256
257
        else:
            self.original_weight_dict = weight_dict
258

gushiqiao's avatar
gushiqiao committed
259
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
260
261
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
262
263
        if not self.init_empty_model:
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
264

265
266
267
268
269
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
270
        # Load weights into containers
271
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
272
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
273

gushiqiao's avatar
gushiqiao committed
274
275
276
277
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

278
279
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
332
333

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
334

gushiqiao's avatar
gushiqiao committed
335
336
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
337
338
339
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
340
        self.transformer_infer = self.transformer_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
341
342
343

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
344
345
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
346
347
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
348
349
350
351
352
353
354
355
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
356
357
    @torch.no_grad()
    def infer(self, inputs):
358
        if self.cpu_offload:
359
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config.model_cls:
360
361
362
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
363
                self.transformer_weights.non_block_weights_to_cuda()
364

365
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
366
367
368
369
370
371
372
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
373
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
374
                else:
helloyongyang's avatar
helloyongyang committed
375
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
376

helloyongyang's avatar
helloyongyang committed
377
378
379
380
381
382
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
383
384
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
385

helloyongyang's avatar
helloyongyang committed
386
387
388
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
389
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
390
391

        if self.cpu_offload:
392
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config.model_cls:
393
394
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
395
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
396
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
397

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
398
    @compiled_method()
399
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
400
401
402
403
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
404
405
406
407
408
409
410
411
412

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
413
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
414
415
416
417
418
419
420
421
422

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
423
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
424
425
426
427
428
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
429
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
430

helloyongyang's avatar
helloyongyang committed
431
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
432

sandy's avatar
sandy committed
433
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] == "i2v":
helloyongyang's avatar
helloyongyang committed
434
435
436
437
438
439
440
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
441
442
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
443
444
445
446
447
448
449
450
451

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
452
        return combined_output