model.py 10.1 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import os
2
import sys
helloyongyang's avatar
helloyongyang committed
3
4
import torch
import glob
5
import json
6
7
8
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.post_weights import WanPostWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
helloyongyang's avatar
helloyongyang committed
9
10
    WanTransformerWeights,
)
11
12
13
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
helloyongyang's avatar
helloyongyang committed
14
15
    WanTransformerInfer,
)
16
17
18
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
    WanTransformerInferTeaCaching,
)
helloyongyang's avatar
helloyongyang committed
19
from safetensors import safe_open
Xinchi Huang's avatar
Xinchi Huang committed
20
21
import lightx2v.attentions.distributed.ulysses.wrap as ulysses_dist_wrap
import lightx2v.attentions.distributed.ring.wrap as ring_dist_wrap
22
23
from lightx2v.utils.envs import *
from loguru import logger
helloyongyang's avatar
helloyongyang committed
24
25
26
27
28
29
30


class WanModel:
    pre_weight_class = WanPreWeights
    post_weight_class = WanPostWeights
    transformer_weight_class = WanTransformerWeights

gushiqiao's avatar
gushiqiao committed
31
    def __init__(self, model_path, config, device):
helloyongyang's avatar
helloyongyang committed
32
33
        self.model_path = model_path
        self.config = config
34
35
36
37
38
39
40

        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
        self.dit_quantized_ckpt = self.config.get("dit_quantized_ckpt", None)
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
41
        self.device = device
helloyongyang's avatar
helloyongyang committed
42
43
44
        self._init_infer_class()
        self._init_weights()
        self._init_infer()
lijiaqi2's avatar
lijiaqi2 committed
45
        self.current_lora = None
helloyongyang's avatar
helloyongyang committed
46

Xinchi Huang's avatar
Xinchi Huang committed
47
48
49
50
51
52
53
        if config["parallel_attn_type"]:
            if config["parallel_attn_type"] == "ulysses":
                ulysses_dist_wrap.parallelize_wan(self)
            elif config["parallel_attn_type"] == "ring":
                ring_dist_wrap.parallelize_wan(self)
            else:
                raise Exception(f"Unsuppotred parallel_attn_type")
Xinchi Huang's avatar
Xinchi Huang committed
54

helloyongyang's avatar
helloyongyang committed
55
56
57
58
59
60
    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
        if self.config["feature_caching"] == "NoCaching":
            self.transformer_infer_class = WanTransformerInfer
        elif self.config["feature_caching"] == "Tea":
61
            self.transformer_infer_class = WanTransformerInferTeaCaching
helloyongyang's avatar
helloyongyang committed
62
        else:
Dongz's avatar
Dongz committed
63
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
64

gushiqiao's avatar
Fix  
gushiqiao committed
65
    def _load_safetensor_to_dict(self, file_path, use_bf16, skip_bf16):
helloyongyang's avatar
helloyongyang committed
66
        with safe_open(file_path, framework="pt") as f:
gushiqiao's avatar
gushiqiao committed
67
            return {key: (f.get_tensor(key).to(torch.bfloat16) if use_bf16 or all(s not in key for s in skip_bf16) else f.get_tensor(key)).pin_memory().to(self.device) for key in f.keys()}
helloyongyang's avatar
helloyongyang committed
68

gushiqiao's avatar
Fix  
gushiqiao committed
69
    def _load_ckpt(self, use_bf16, skip_bf16):
helloyongyang's avatar
helloyongyang committed
70
71
72
73
        safetensors_pattern = os.path.join(self.model_path, "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)

        if not safetensors_files:
Dongz's avatar
Dongz committed
74
            raise FileNotFoundError(f"No .safetensors files found in directory: {self.model_path}")
helloyongyang's avatar
helloyongyang committed
75
76
        weight_dict = {}
        for file_path in safetensors_files:
gushiqiao's avatar
Fix  
gushiqiao committed
77
            file_weights = self._load_safetensor_to_dict(file_path, use_bf16, skip_bf16)
helloyongyang's avatar
helloyongyang committed
78
79
80
            weight_dict.update(file_weights)
        return weight_dict

gushiqiao's avatar
Fix  
gushiqiao committed
81
    def _load_quant_ckpt(self, use_bf16, skip_bf16):
82
83
        ckpt_path = self.config.dit_quantized_ckpt
        logger.info(f"Loading quant dit model from {ckpt_path}")
84

gushiqiao's avatar
Fix  
gushiqiao committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
                    if f.get_tensor(k).dtype == torch.float:
                        if use_bf16 or all(s not in k for s in skip_bf16):
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(torch.bfloat16).to(self.device)
                        else:
                            weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
                    else:
                        weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
108

109
110
        return weight_dict

gushiqiao's avatar
Fix  
gushiqiao committed
111
    def _load_quant_split_ckpt(self, use_bf16, skip_bf16):
112
113
114
115
116
        lazy_load_model_path = self.config.dit_quantized_ckpt
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
        pre_post_weight_dict, transformer_weight_dict = {}, {}

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
117
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
118
            for k in f.keys():
gushiqiao's avatar
Fix  
gushiqiao committed
119
120
121
122
123
124
125
                if f.get_tensor(k).dtype == torch.float:
                    if use_bf16 or all(s not in k for s in skip_bf16):
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(torch.bfloat16).to(self.device)
                    else:
                        pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
                else:
                    pre_post_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
126
127
128
129
130
131
132
133
134
135

        safetensors_pattern = os.path.join(lazy_load_model_path, "block_*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)
        if not safetensors_files:
            raise FileNotFoundError(f"No .safetensors files found in directory: {lazy_load_model_path}")

        for file_path in safetensors_files:
            with safe_open(file_path, framework="pt") as f:
                for k in f.keys():
                    if "modulation" in k:
gushiqiao's avatar
Fix  
gushiqiao committed
136
137
138
139
140
                        if f.get_tensor(k).dtype == torch.float:
                            if use_bf16 or all(s not in k for s in skip_bf16):
                                transformer_weight_dict[k] = f.get_tensor(k).pin_memory().to(torch.bfloat16).to(self.device)
                            else:
                                transformer_weight_dict[k] = f.get_tensor(k).pin_memory().to(self.device)
141
142
143

        return pre_post_weight_dict, transformer_weight_dict

lijiaqi2's avatar
lijiaqi2 committed
144
    def _init_weights(self, weight_dict=None):
gushiqiao's avatar
Fix  
gushiqiao committed
145
146
        use_bf16 = GET_DTYPE() == "BF16"
        # Some layers run with float32 to achieve high accuracy
gushiqiao's avatar
Fix.  
gushiqiao committed
147
        skip_bf16 = {"norm", "embedding", "modulation", "time", "img_emb.proj.0", "img_emb.proj.4"}
lijiaqi2's avatar
lijiaqi2 committed
148
        if weight_dict is None:
149
            if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
Fix  
gushiqiao committed
150
                self.original_weight_dict = self._load_ckpt(use_bf16, skip_bf16)
151
            else:
152
                if not self.config.get("lazy_load", False):
gushiqiao's avatar
Fix  
gushiqiao committed
153
                    self.original_weight_dict = self._load_quant_ckpt(use_bf16, skip_bf16)
154
155
156
157
                else:
                    (
                        self.original_weight_dict,
                        self.transformer_weight_dict,
gushiqiao's avatar
Fix  
gushiqiao committed
158
                    ) = self._load_quant_split_ckpt(use_bf16, skip_bf16)
lijiaqi2's avatar
lijiaqi2 committed
159
160
        else:
            self.original_weight_dict = weight_dict
helloyongyang's avatar
helloyongyang committed
161
162
        # init weights
        self.pre_weight = self.pre_weight_class(self.config)
TorynCurtis's avatar
TorynCurtis committed
163
        self.post_weight = self.post_weight_class(self.config)
helloyongyang's avatar
helloyongyang committed
164
165
        self.transformer_weights = self.transformer_weight_class(self.config)
        # load weights
166
167
        self.pre_weight.load(self.original_weight_dict)
        self.post_weight.load(self.original_weight_dict)
168
169
170
171
        if hasattr(self, "transformer_weight_dict"):
            self.transformer_weights.load(self.transformer_weight_dict)
        else:
            self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
172
173
174
175
176
177
178
179

    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
        self.transformer_infer = self.transformer_infer_class(self.config)

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
180
181
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
182
183
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
184
185
186
187
188
189
190
191
192
193
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.post_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.post_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
194
    @torch.no_grad()
195
    def infer(self, inputs):
gushiqiao's avatar
gushiqiao committed
196
197
198
199
        if self.config["cpu_offload"]:
            self.pre_weight.to_cuda()
            self.post_weight.to_cuda()

200
        embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=True)
gushiqiao's avatar
Fix bug  
gushiqiao committed
201
        x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
Dongz's avatar
Dongz committed
202
        noise_pred_cond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
203
204
205
206
207

        if self.config["feature_caching"] == "Tea":
            self.scheduler.cnt += 1
            if self.scheduler.cnt >= self.scheduler.num_steps:
                self.scheduler.cnt = 0
root's avatar
root committed
208
        self.scheduler.noise_pred = noise_pred_cond
helloyongyang's avatar
helloyongyang committed
209

210
        if self.config["enable_cfg"]:
root's avatar
root committed
211
            embed, grid_sizes, pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs, positive=False)
gushiqiao's avatar
Fix bug  
gushiqiao committed
212
            x = self.transformer_infer.infer(self.transformer_weights, grid_sizes, embed, *pre_infer_out)
root's avatar
root committed
213
            noise_pred_uncond = self.post_infer.infer(self.post_weight, x, embed, grid_sizes)[0]
helloyongyang's avatar
helloyongyang committed
214

root's avatar
root committed
215
216
217
218
            if self.config["feature_caching"] == "Tea":
                self.scheduler.cnt += 1
                if self.scheduler.cnt >= self.scheduler.num_steps:
                    self.scheduler.cnt = 0
helloyongyang's avatar
helloyongyang committed
219

root's avatar
root committed
220
            self.scheduler.noise_pred = noise_pred_uncond + self.config.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
gushiqiao's avatar
gushiqiao committed
221

root's avatar
root committed
222
223
224
            if self.config["cpu_offload"]:
                self.pre_weight.to_cpu()
                self.post_weight.to_cpu()