model.py 18.6 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
2
import json
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
35
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
36

37
38
39
40
41
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
42

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
43
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
44
45
46
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

helloyongyang's avatar
helloyongyang committed
47
    def __init__(self, model_path, config, device):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
48
        super().__init__()
helloyongyang's avatar
helloyongyang committed
49
50
        self.model_path = model_path
        self.config = config
51
52
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
helloyongyang's avatar
helloyongyang committed
53
54
55
56
57

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
58

gushiqiao's avatar
gushiqiao committed
59
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
60
        self.dit_quantized = self.config.mm_config.get("mm_type", "Default") != "Default"
61

gushiqiao's avatar
gushiqiao committed
62
63
        if self.dit_quantized:
            dit_quant_scheme = self.config.mm_config.get("mm_type").split("-")[1]
gushiqiao's avatar
gushiqiao committed
64
65
            if self.config.model_cls == "wan2.1_distill":
                dit_quant_scheme = "distill_" + dit_quant_scheme
66
67
68
69
            if dit_quant_scheme == "gguf":
                self.dit_quantized_ckpt = find_gguf_model_path(config, "dit_quantized_ckpt", subdir=dit_quant_scheme)
                self.config.use_gguf = True
            else:
70
71
72
73
74
75
                self.dit_quantized_ckpt = find_hf_model_path(
                    config,
                    self.model_path,
                    "dit_quantized_ckpt",
                    subdir=dit_quant_scheme,
                )
gushiqiao's avatar
Fix bug  
gushiqiao committed
76
77
78
79
80
            quant_config_path = os.path.join(self.dit_quantized_ckpt, "config.json")
            if os.path.exists(quant_config_path):
                with open(quant_config_path, "r") as f:
                    quant_model_config = json.load(f)
                self.config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
81
82
        else:
            self.dit_quantized_ckpt = None
83
84
            assert not self.config.get("lazy_load", False)

85
86
87
88
        self.weight_auto_quant = self.config.mm_config.get("weight_auto_quant", False)
        if self.dit_quantized:
            assert self.weight_auto_quant or self.dit_quantized_ckpt is not None

gushiqiao's avatar
gushiqiao committed
89
        self.device = device
helloyongyang's avatar
helloyongyang committed
90
91
92
93
94
95
96
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
97
98

        if self.config["feature_caching"] == "NoCaching":
99
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
114
115
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
116
        else:
helloyongyang's avatar
helloyongyang committed
117
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
118

gushiqiao's avatar
gushiqiao committed
119
120
121
122
123
124
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
125
126
127
128
129
130
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
131
132
133
                return True
        return False

134
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
135
136
137
138
139
        if self.device.type == "cuda" and dist.is_initialized():
            device = torch.device("cuda:{}".format(dist.get_rank()))
        else:
            device = self.device
        with safe_open(file_path, framework="pt", device=str(device)) as f:
gushiqiao's avatar
gushiqiao committed
140
            return {key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE())) for key in f.keys()}
helloyongyang's avatar
helloyongyang committed
141

142
    def _load_ckpt(self, unified_dtype, sensitive_layer):
helloyongyang's avatar
helloyongyang committed
143
        safetensors_path = find_hf_model_path(self.config, self.model_path, "dit_original_ckpt", subdir="original")
144
        safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
145

helloyongyang's avatar
helloyongyang committed
146
147
        weight_dict = {}
        for file_path in safetensors_files:
148
149
150
            if self.config.get("adapter_model_path", None) is not None:
                if self.config.adapter_model_path == file_path:
                    continue
151
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
152
153
154
            weight_dict.update(file_weights)
        return weight_dict

155
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
156
        ckpt_path = self.dit_quantized_ckpt
gushiqiao's avatar
Fix  
gushiqiao committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        index_files = [f for f in os.listdir(ckpt_path) if f.endswith(".index.json")]
        if not index_files:
            raise FileNotFoundError(f"No *.index.json found in {ckpt_path}")

        index_path = os.path.join(ckpt_path, index_files[0])
        logger.info(f" Using safetensors index: {index_path}")

        with open(index_path, "r") as f:
            index_data = json.load(f)

        weight_dict = {}
        for filename in set(index_data["weight_map"].values()):
            safetensor_path = os.path.join(ckpt_path, filename)
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
173
174
175
176
177
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
178
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
179
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
180
                        else:
gushiqiao's avatar
gushiqiao committed
181
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
182
                    else:
gushiqiao's avatar
gushiqiao committed
183
                        weight_dict[k] = f.get_tensor(k).to(self.device)
184

185
186
        return weight_dict

187
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):
gushiqiao's avatar
gushiqiao committed
188
        lazy_load_model_path = self.dit_quantized_ckpt
189
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
190
        pre_post_weight_dict = {}
191
192

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
193
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
194
            for k in f.keys():
195
196
197
198
199
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
200
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
201
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
202
                    else:
gushiqiao's avatar
gushiqiao committed
203
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
204
                else:
gushiqiao's avatar
gushiqiao committed
205
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
206

gushiqiao's avatar
gushiqiao committed
207
        return pre_post_weight_dict
208

209
210
211
212
213
214
215
216
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
217
    def _init_weights(self, weight_dict=None):
218
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
219
        # Some layers run with float32 to achieve high accuracy
220
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
221
222
223
224
225
226
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
227
228
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
229
        }
230

lijiaqi2's avatar
lijiaqi2 committed
231
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
232
            is_weight_loader = self._should_load_weights()
233
234
            if is_weight_loader:
                if not self.dit_quantized or self.weight_auto_quant:
gushiqiao's avatar
gushiqiao committed
235
236
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
237
                else:
gushiqiao's avatar
gushiqiao committed
238
                    # Load quantized weights
239
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
240
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
241
                    else:
gushiqiao's avatar
gushiqiao committed
242
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
243

244
245
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
246

247
248
249
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
250
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
251
252
        else:
            self.original_weight_dict = weight_dict
253

gushiqiao's avatar
gushiqiao committed
254
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
255
256
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
gushiqiao's avatar
gushiqiao committed
257
258

        # Load weights into containers
259
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
260
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
261

gushiqiao's avatar
gushiqiao committed
262
263
264
265
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

266
267
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
320
321

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
322

gushiqiao's avatar
gushiqiao committed
323
324
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
325
326
327
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
328
        self.transformer_infer = self.transformer_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
329
330
331

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
332
333
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
334
335
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
336
337
338
339
340
341
342
343
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
344
345
    @torch.no_grad()
    def infer(self, inputs):
346
347
348
349
350
        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == 0:
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
351
                self.transformer_weights.non_block_weights_to_cuda()
352

353
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
354
355
356
357
358
359
360
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
361
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
362
                else:
helloyongyang's avatar
helloyongyang committed
363
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
364

helloyongyang's avatar
helloyongyang committed
365
366
367
368
369
370
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
371
372
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
373

helloyongyang's avatar
helloyongyang committed
374
375
376
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
377
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
378
379
380
381
382

        if self.cpu_offload:
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1:
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
383
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
384
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
385

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
386
    @compiled_method()
387
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
388
389
390
391
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
392
393
394
395
396
397
398
399
400

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
401
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
402
403
404
405
406
407
408
409
410

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
411
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
412
413
414
415
416
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
417
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
418

helloyongyang's avatar
helloyongyang committed
419
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
420

sandy's avatar
sandy committed
421
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] == "i2v":
helloyongyang's avatar
helloyongyang committed
422
423
424
425
426
427
428
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
429
430
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
431
432
433
434
435
436
437
438
439

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
440
        return combined_output