wan_audio_runner.py 34.3 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
import os
import subprocess
from dataclasses import dataclass
5
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
6

wangshankun's avatar
wangshankun committed
7
8
import numpy as np
import torch
9
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
10
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
11
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
17

LiangLiu's avatar
LiangLiu committed
18
19
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
20
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
21
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
22
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
23
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
24
from lightx2v.models.runners.wan.wan_runner import WanRunner
25
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
26
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
27
from lightx2v.utils.envs import *
28
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
29
from lightx2v.utils.registry_factory import RUNNER_REGISTER
sandy's avatar
sandy committed
30
from lightx2v.utils.utils import find_torch_model_path, load_weights, save_to_video, vae_to_comfyui_image
31

wangshankun's avatar
wangshankun committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
48
49
                h_ratio *= 2
            else:
50
                patched_w //= 2
51
                w_ratio *= 2
52
    return patched_h * h_ratio, patched_w * w_ratio
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
74
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
75
76
    size: (H, W)
    """
77
78
79
80
81
82
83
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

84
85
86
87
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
88
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
89
90
91
92

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

93
94
95
    return resized_frames


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


117
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
118
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
119
120
121
122
123

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
124

125
126
127
128
129
130
131
132
133
134
135
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
136
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
137
138
139
140
141
142
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
143
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
144

145
146
147
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
148
149
150
151
152
153
154
155
156
157
158

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
159
        for resolution in bucket_config[closet_ratio]:
160
161
162
163
164
165
166
167
168
169
170
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
171
        target_h, target_w = bucket_config[closet_ratio][0]
172
173
174
175
176
177
178
179
180
181
    elif resize_mode == "fixed_min_side":
        assert fixed_area in ["480p", "720p"], f"fixed_min_side mode requires fixed_area to be '480p' or '720p', got {fixed_area}"

        min_side = 720 if fixed_area == "720p" else 480
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
182
183
184
185
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
186
        target_h, target_w = bucket_config[closet_ratio][-1]
187

188
189
190
191
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


192
193
194
195
196
197
198
199
200
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int


201
class FramePreprocessorTorchVersion:
202
203
204
205
206
207
208
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

209
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
210
211
        """Add noise to frames"""

212
        device = frames.device
213
214
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
215
216
217
218
219
220
221
222
223
224

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
225
226
        return frames + noise

227
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
228
229
        """Add mask to frames"""

230
        device = frames.device
231
        h, w = frames.shape[-2:]
232
233
234

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
235
236
237
238
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
239
240
241
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
242
243
244
245
246
247
248
249


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
250
        self.audio_frame_rate = audio_sr // target_fps
251
252
253
254
255
256
257
258
259

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
260
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
261
262
263
264

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []
sandy's avatar
sandy committed
265
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
266

sandy's avatar
sandy committed
267
268
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
        audio_array_ori = audio_array[audio_start:audio_end]
269

sandy's avatar
sandy committed
270
271
272
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
            audio_array = audio_array_ori[audio_start:audio_end]
273

sandy's avatar
sandy committed
274
275
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
276
            else:
sandy's avatar
sandy committed
277
278
279
280
                if audio_array.shape[0] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[0]
                    audio_array = np.concatenate((audio_array, np.zeros(padding_len)), axis=0)
                    end_idx = end_idx - padding_len // self.audio_frame_rate
281

sandy's avatar
sandy committed
282
283
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
284
285
        return segments

sandy's avatar
sandy committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

302

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
303
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
304
305
306
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
307
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
308
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
309
310
311

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
312
        scheduler = EulerScheduler(self.config)
313
314
315
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.audio_adapter = self.load_audio_adapter()
            self.model.set_audio_adapter(self.audio_adapter)
316
        scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
317
318
319
320
321
322
323
        self.model.set_scheduler(scheduler)

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
LiangLiu's avatar
LiangLiu committed
324
325
        if not isinstance(self.config["audio_path"], str):
            return [], 0
helloyongyang's avatar
helloyongyang committed
326
327
328
329
330
331
332
333
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
334
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
335
336
337
338

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
339
340
341
342
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
343
344
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

345
346
347
348
349
350
351
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
352
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
helloyongyang's avatar
helloyongyang committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
370
371
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
372
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
373
374
375
376
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
377
378
379
        return clip_encoder_out

    def run_vae_encoder(self, img):
380
381
382
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
383
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
384
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
385

386
387
388
389
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
390
391
        return vae_encoder_out

392
    @ProfilingContext4DebugL2("Run Encoders")
helloyongyang's avatar
helloyongyang committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
411
412
413

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
414
        device = torch.device("cuda")
415
        dtype = GET_DTYPE()
416
417
418
419

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

420
421
422
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
423
424
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
425
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
426
427
428
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
429

430
431
432
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

433
        _, nframe, height, width = self.model.scheduler.latents.shape
434
        with ProfilingContext4DebugL1("vae_encoder in init run segment"):
435
436
437
438
439
440
            if self.config.model_cls == "wan2.2_audio":
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
441
            else:
442
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
443

444
445
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
446
447
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
448
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
449

sandy's avatar
sandy committed
450
451
452
453
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
454

455
456
457
458
459
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
460
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
461
462
463
464
465
466
467
468
469
470
471
472
473

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

helloyongyang's avatar
helloyongyang committed
474
475
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
476

helloyongyang's avatar
helloyongyang committed
477
478
    def init_run(self):
        super().init_run()
wangshankun's avatar
wangshankun committed
479

helloyongyang's avatar
helloyongyang committed
480
481
482
        self.gen_video_list = []
        self.cut_audio_list = []
        self.prev_video = None
wangshankun's avatar
wangshankun committed
483

484
    @ProfilingContext4DebugL1("Init run segment")
LiangLiu's avatar
LiangLiu committed
485
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
486
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
487
        if audio_array is not None:
sandy's avatar
sandy committed
488
            self.segment = AudioSegment(audio_array, 0, audio_array.shape[0])
LiangLiu's avatar
LiangLiu committed
489
490
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
491

helloyongyang's avatar
helloyongyang committed
492
493
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
494
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
495

496
497
498
499
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
500
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
501

helloyongyang's avatar
helloyongyang committed
502
        self.inputs["audio_encoder_output"] = audio_features
503
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
504

helloyongyang's avatar
helloyongyang committed
505
506
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
507
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
508

509
    @ProfilingContext4DebugL1("End run segment")
helloyongyang's avatar
helloyongyang committed
510
511
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
512
513
514
        useful_length = self.segment.end_frame - self.segment.start_frame
        self.gen_video_list.append(self.gen_video[:, :, :useful_length].cpu())
        self.cut_audio_list.append(self.segment.audio_array[: useful_length * self._audio_processor.audio_frame_rate])
helloyongyang's avatar
helloyongyang committed
515

LiangLiu's avatar
LiangLiu committed
516
517
518
519
520
521
522
523
        if self.va_recorder:
            cur_video = vae_to_comfyui_image(self.gen_video_list[-1])
            self.va_recorder.pub_livestream(cur_video, self.cut_audio_list[-1])

        if self.va_reader:
            self.gen_video_list.pop()
            self.cut_audio_list.pop()

helloyongyang's avatar
helloyongyang committed
524
525
526
527
528
529
530
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

        # Clean up GPU memory after each segment
        del self.gen_video
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
        output_video_path = self.config.get("save_video_path", None)
        self.va_recorder = None
        if isinstance(output_video_path, dict):
            assert output_video_path["type"] == "stream", f"unexcept save_video_path: {output_video_path}"
            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                record_fps = self.config.get("target_fps", 16)
                audio_sr = self.config.get("audio_sr", 16000)
                if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                    record_fps = self.config["video_frame_interpolation"]["target_fps"]
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path["data"],
                    fps=record_fps,
                    sample_rate=audio_sr,
                )

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
            if rank == 2 % world_size:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 0"
            self.va_reader.start()

            self.init_run()
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
599
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
600
601
602
603
604
605
606
607
608
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

609
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
610
611
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
612
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
            if hasattr(self.model, "scheduler"):
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

627
    @ProfilingContext4DebugL1("Process after vae decoder")
helloyongyang's avatar
helloyongyang committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    def process_images_after_vae_decoder(self, save_video=True):
        # Merge results
        gen_lvideo = torch.cat(self.gen_video_list, dim=2).float()
        merge_audio = np.concatenate(self.cut_audio_list, axis=0).astype(np.float32)

        comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
644

LiangLiu's avatar
LiangLiu committed
645
        if save_video and isinstance(self.config["save_video_path"], str):
helloyongyang's avatar
helloyongyang committed
646
647
648
649
            if "video_frame_interpolation" in self.config and self.config["video_frame_interpolation"].get("target_fps"):
                fps = self.config["video_frame_interpolation"]["target_fps"]
            else:
                fps = self.config.get("fps", 16)
650

helloyongyang's avatar
helloyongyang committed
651
652
            if not dist.is_initialized() or dist.get_rank() == 0:
                logger.info(f"🎬 Start to save video 🎬")
653

helloyongyang's avatar
helloyongyang committed
654
655
                self._save_video_with_audio(comfyui_images, merge_audio, fps)
                logger.info(f"✅ Video saved successfully to: {self.config.save_video_path} ✅")
656

helloyongyang's avatar
helloyongyang committed
657
658
659
        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
660

helloyongyang's avatar
helloyongyang committed
661
        return {"video": comfyui_images, "audio": comfyui_audio}
662

helloyongyang's avatar
helloyongyang committed
663
664
665
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
666
667
668
669
670
671
672
673
674
675
676
677
678

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
679
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
696
697

    def load_transformer(self):
698
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
699
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
700
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
701
702
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
703
704
705
706
707
708
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
709

wangshankun's avatar
wangshankun committed
710
711
        return base_model

helloyongyang's avatar
helloyongyang committed
712
    def load_audio_encoder(self):
713
        audio_encoder_path = os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large")
714
715
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
716
        return model
717

helloyongyang's avatar
helloyongyang committed
718
    def load_audio_adapter(self):
719
720
721
722
723
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
724
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
725
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
726
727
728
729
730
731
732
733
734
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
735
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
736
        )
737

738
739
        audio_adapter.to(device)
        weights_dict = load_weights(self.config.adapter_model_path, cpu_offload=audio_adapter_offload, remove_key="ca")
740
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
741
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
742

helloyongyang's avatar
helloyongyang committed
743
744
    def load_model(self):
        super().load_model()
745
746
747
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
748
749

    def set_target_shape(self):
750
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
751
752
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
753
754
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
755

wangshankun's avatar
wangshankun committed
756
757
758
759
760
761
762
763
764
765
766
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
767
            assert False, error_msg
wangshankun's avatar
wangshankun committed
768
769
770

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder