model.py 21 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
2
import glob
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
35
from lightx2v.utils.ggml_tensor import load_gguf_sd_ckpt
36
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
37
38


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
39
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
40
41
42
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

43
    def __init__(self, model_path, config, device, model_type="wan2.1"):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
44
        super().__init__()
helloyongyang's avatar
helloyongyang committed
45
46
        self.model_path = model_path
        self.config = config
47
48
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
49
        self.model_type = model_type
helloyongyang's avatar
helloyongyang committed
50
51
52
53
54

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
55

gushiqiao's avatar
gushiqiao committed
56
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
57
        self.dit_quantized = self.config.get("dit_quantized", False)
58
        if self.dit_quantized:
59
60
61
62
63
64
65
66
67
68
69
70
71
72
            assert self.config.get("dit_quant_scheme", "Default") in [
                "Default-Force-FP32",
                "fp8-vllm",
                "int8-vllm",
                "fp8-q8f",
                "int8-q8f",
                "fp8-b128-deepgemm",
                "fp8-sgl",
                "int8-sgl",
                "int8-torchao",
                "nvfp4",
                "mxfp4",
                "mxfp6-mxfp8",
                "mxfp8",
Kane's avatar
Kane committed
73
                "int8-tmo",
yihuiwen's avatar
yihuiwen committed
74
75
76
77
78
79
80
81
82
83
84
85
                "gguf-Q8_0",
                "gguf-Q6_K",
                "gguf-Q5_K_S",
                "gguf-Q5_K_M",
                "gguf-Q5_0",
                "gguf-Q5_1",
                "gguf-Q4_K_S",
                "gguf-Q4_K_M",
                "gguf-Q4_0",
                "gguf-Q4_1",
                "gguf-Q3_K_S",
                "gguf-Q3_K_M",
86
            ]
gushiqiao's avatar
gushiqiao committed
87
        self.device = device
helloyongyang's avatar
helloyongyang committed
88
89
90
91
92
93
94
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
95
96

        if self.config["feature_caching"] == "NoCaching":
97
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
112
113
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
114
        else:
helloyongyang's avatar
helloyongyang committed
115
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
116

gushiqiao's avatar
gushiqiao committed
117
118
119
120
121
122
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
123
124
125
126
127
128
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
129
130
131
                return True
        return False

132
    def _should_init_empty_model(self):
133
        if self.config.get("lora_configs") and self.config["lora_configs"]:
134
135
136
137
138
139
140
141
142
143
144
145
            if self.model_type in ["wan2.1"]:
                return True
            if self.model_type in ["wan2.2_moe_high_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "high_noise_model":
                        return True
            if self.model_type in ["wan2.2_moe_low_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "low_noise_model":
                        return True
        return False

146
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
147
148
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []

149
150
        if self.config["parallel"]:
            device = dist.get_rank()
151
        else:
152
            device = str(self.device)
153

154
        with safe_open(file_path, framework="pt", device=device) as f:
155
156
157
158
159
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE()))
                for key in f.keys()
                if not any(remove_key in key for remove_key in remove_keys)
            }
helloyongyang's avatar
helloyongyang committed
160

161
    def _load_ckpt(self, unified_dtype, sensitive_layer):
162
163
164
165
166
167
168
169
170
        if self.config.get("dit_original_ckpt", None):
            safetensors_path = self.config["dit_original_ckpt"]
        else:
            safetensors_path = self.model_path

        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
171

helloyongyang's avatar
helloyongyang committed
172
173
        weight_dict = {}
        for file_path in safetensors_files:
174
            if self.config.get("adapter_model_path", None) is not None:
175
                if self.config["adapter_model_path"] == file_path:
176
                    continue
177
            logger.info(f"Loading weights from {file_path}")
178
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
179
            weight_dict.update(file_weights)
180

helloyongyang's avatar
helloyongyang committed
181
182
        return weight_dict

183
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
184
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []
gushiqiao's avatar
Fix  
gushiqiao committed
185

186
187
188
189
        if self.config.get("dit_quantized_ckpt", None):
            safetensors_path = self.config["dit_quantized_ckpt"]
        else:
            safetensors_path = self.model_path
gushiqiao's avatar
Fix  
gushiqiao committed
190

yihuiwen's avatar
yihuiwen committed
191
192
193
194
195
196
197
198
199
200
201
        if "gguf" in self.config.get("dit_quant_scheme", ""):
            gguf_path = ""
            if os.path.isdir(safetensors_path):
                gguf_type = self.config.get("dit_quant_scheme").replace("gguf-", "")
                gguf_files = list(filter(lambda x: gguf_type in x, glob.glob(os.path.join(safetensors_path, "*.gguf"))))
                gguf_path = gguf_files[0]
            else:
                gguf_path = safetensors_path
            weight_dict = self._load_gguf_ckpt(gguf_path)
            return weight_dict

202
203
204
205
        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
206
            safetensors_path = os.path.dirname(safetensors_path)
gushiqiao's avatar
Fix  
gushiqiao committed
207
208

        weight_dict = {}
209
210
211
212
        for safetensor_path in safetensors_files:
            if self.config.get("adapter_model_path", None) is not None:
                if self.config["adapter_model_path"] == safetensor_path:
                    continue
yihuiwen's avatar
yihuiwen committed
213

gushiqiao's avatar
Fix  
gushiqiao committed
214
215
216
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
217
218
                    if any(remove_key in k for remove_key in remove_keys):
                        continue
219
220
221
222
223
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
224
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
225
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
226
                        else:
gushiqiao's avatar
gushiqiao committed
227
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
228
                    else:
gushiqiao's avatar
gushiqiao committed
229
                        weight_dict[k] = f.get_tensor(k).to(self.device)
230

231
232
233
234
235
236
237
        if self.config.get("dit_quant_scheme", "Default") == "nvfp4":
            calib_path = os.path.join(safetensors_path, "calib.pt")
            logger.info(f"[CALIB] Loaded calibration data from: {calib_path}")
            calib_data = torch.load(calib_path, map_location="cpu")
            for k, v in calib_data["absmax"].items():
                weight_dict[k.replace(".weight", ".input_absmax")] = v.to(self.device)

238
239
        return weight_dict

240
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):  # Need rewrite
gushiqiao's avatar
gushiqiao committed
241
        lazy_load_model_path = self.dit_quantized_ckpt
242
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
243
        pre_post_weight_dict = {}
244
245

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
246
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
247
            for k in f.keys():
248
249
250
251
252
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
253
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
254
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
255
                    else:
gushiqiao's avatar
gushiqiao committed
256
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
257
                else:
gushiqiao's avatar
gushiqiao committed
258
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
259

gushiqiao's avatar
gushiqiao committed
260
        return pre_post_weight_dict
261

yihuiwen's avatar
yihuiwen committed
262
263
264
    def _load_gguf_ckpt(self, gguf_path):
        state_dict = load_gguf_sd_ckpt(gguf_path, to_device=self.device)
        return state_dict
265

lijiaqi2's avatar
lijiaqi2 committed
266
    def _init_weights(self, weight_dict=None):
267
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
268
        # Some layers run with float32 to achieve high accuracy
269
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
270
271
272
273
274
275
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
276
277
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
278
        }
279

lijiaqi2's avatar
lijiaqi2 committed
280
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
281
            is_weight_loader = self._should_load_weights()
282
            if is_weight_loader:
283
                if not self.dit_quantized:
gushiqiao's avatar
gushiqiao committed
284
285
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
286
                else:
gushiqiao's avatar
gushiqiao committed
287
                    # Load quantized weights
288
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
289
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
290
                    else:
gushiqiao's avatar
gushiqiao committed
291
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
292

293
294
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
295

296
297
298
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
299
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
300
301
        else:
            self.original_weight_dict = weight_dict
302

gushiqiao's avatar
gushiqiao committed
303
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
304
305
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
306
        if not self._should_init_empty_model():
307
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
308

309
310
311
312
313
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
314
        # Load weights into containers
315
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
316
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
317

gushiqiao's avatar
gushiqiao committed
318
319
320
321
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

322
323
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
376
377

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
378

gushiqiao's avatar
gushiqiao committed
379
380
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
381
382
383
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
384
        self.transformer_infer = self.transformer_infer_class(self.config)
385
386
        if hasattr(self.transformer_infer, "offload_manager"):
            self.transformer_infer.offload_manager.init_cuda_buffer(self.transformer_weights.offload_block_buffers, self.transformer_weights.offload_phase_buffers)
helloyongyang's avatar
helloyongyang committed
387
388
389

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
390
391
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
392
393
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
394
395
396
397
398
399
400
401
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
402
403
    @torch.no_grad()
    def infer(self, inputs):
404
        if self.cpu_offload:
405
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config["model_cls"]:
406
407
408
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
409
                self.transformer_weights.non_block_weights_to_cuda()
410

411
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
412
413
414
415
416
417
418
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
419
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
420
                else:
helloyongyang's avatar
helloyongyang committed
421
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
422

helloyongyang's avatar
helloyongyang committed
423
424
425
426
427
428
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
429
430
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
431

helloyongyang's avatar
helloyongyang committed
432
433
434
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
435
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
436
437

        if self.cpu_offload:
438
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config["model_cls"]:
439
440
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
441
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
442
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
443

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
444
    @compiled_method()
445
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
446
447
448
449
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
450
451
452
453
454
455
456
457
458

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
459
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
460
461
462
463
464
465
466
467
468

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
469
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
470
471
472
473
474
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
475
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
476

helloyongyang's avatar
helloyongyang committed
477
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
478

479
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] in ["i2v", "s2v"]:
helloyongyang's avatar
helloyongyang committed
480
481
482
483
484
485
486
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
487
488
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
489
490
491
492
493
494
495
496
497

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
498
        return combined_output