model.py 21.3 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
2
import glob
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
35
from lightx2v.utils.ggml_tensor import load_gguf_sd_ckpt
36
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
37
38


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
39
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
40
41
42
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

43
    def __init__(self, model_path, config, device, model_type="wan2.1"):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
44
        super().__init__()
helloyongyang's avatar
helloyongyang committed
45
46
        self.model_path = model_path
        self.config = config
47
48
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
49
        self.model_type = model_type
50
51
52
53
        self.remove_keys = []
        self.lazy_load = self.config.get("lazy_load", False)
        if self.lazy_load:
            self.remove_keys.extend(["blocks."])
helloyongyang's avatar
helloyongyang committed
54
55
56
57
        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
58

gushiqiao's avatar
gushiqiao committed
59
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
60
        self.dit_quantized = self.config.get("dit_quantized", False)
61
        if self.dit_quantized:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
            assert self.config.get("dit_quant_scheme", "Default") in [
                "Default-Force-FP32",
                "fp8-vllm",
                "int8-vllm",
                "fp8-q8f",
                "int8-q8f",
                "fp8-b128-deepgemm",
                "fp8-sgl",
                "int8-sgl",
                "int8-torchao",
                "nvfp4",
                "mxfp4",
                "mxfp6-mxfp8",
                "mxfp8",
Kane's avatar
Kane committed
76
                "int8-tmo",
yihuiwen's avatar
yihuiwen committed
77
78
79
80
81
82
83
84
85
86
87
88
                "gguf-Q8_0",
                "gguf-Q6_K",
                "gguf-Q5_K_S",
                "gguf-Q5_K_M",
                "gguf-Q5_0",
                "gguf-Q5_1",
                "gguf-Q4_K_S",
                "gguf-Q4_K_M",
                "gguf-Q4_0",
                "gguf-Q4_1",
                "gguf-Q3_K_S",
                "gguf-Q3_K_M",
89
            ]
gushiqiao's avatar
gushiqiao committed
90
        self.device = device
helloyongyang's avatar
helloyongyang committed
91
92
93
94
95
96
97
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
98
99

        if self.config["feature_caching"] == "NoCaching":
100
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
115
116
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
117
        else:
helloyongyang's avatar
helloyongyang committed
118
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
119

gushiqiao's avatar
gushiqiao committed
120
121
122
123
124
125
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
126
127
128
129
130
131
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
132
133
134
                return True
        return False

135
    def _should_init_empty_model(self):
136
        if self.config.get("lora_configs") and self.config["lora_configs"]:
137
138
139
140
141
142
143
144
145
146
147
148
            if self.model_type in ["wan2.1"]:
                return True
            if self.model_type in ["wan2.2_moe_high_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "high_noise_model":
                        return True
            if self.model_type in ["wan2.2_moe_low_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "low_noise_model":
                        return True
        return False

149
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
150
151
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []

152
        if self.device.type != "cpu" and dist.is_initialized():
153
            device = dist.get_rank()
154
        else:
155
            device = str(self.device)
156

157
        with safe_open(file_path, framework="pt", device=device) as f:
158
159
160
161
162
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE()))
                for key in f.keys()
                if not any(remove_key in key for remove_key in remove_keys)
            }
helloyongyang's avatar
helloyongyang committed
163

164
    def _load_ckpt(self, unified_dtype, sensitive_layer):
165
166
167
168
169
170
171
172
173
        if self.config.get("dit_original_ckpt", None):
            safetensors_path = self.config["dit_original_ckpt"]
        else:
            safetensors_path = self.model_path

        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
174

175
        if self.lazy_load:
176
177
178
179
180
181
            self.lazy_load_path = safetensors_path
            non_block_file = os.path.join(safetensors_path, "non_block.safetensors")
            if os.path.exists(non_block_file):
                safetensors_files = [non_block_file]
            else:
                raise ValueError(f"Non-block file not found in {safetensors_path}")
182

helloyongyang's avatar
helloyongyang committed
183
184
        weight_dict = {}
        for file_path in safetensors_files:
185
            if self.config.get("adapter_model_path", None) is not None:
186
                if self.config["adapter_model_path"] == file_path:
187
                    continue
188
            logger.info(f"Loading weights from {file_path}")
189
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
190
            weight_dict.update(file_weights)
191

helloyongyang's avatar
helloyongyang committed
192
193
        return weight_dict

194
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
195
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []
196
197
198
199
        if self.config.get("dit_quantized_ckpt", None):
            safetensors_path = self.config["dit_quantized_ckpt"]
        else:
            safetensors_path = self.model_path
gushiqiao's avatar
Fix  
gushiqiao committed
200

yihuiwen's avatar
yihuiwen committed
201
202
203
204
205
206
207
208
209
210
211
        if "gguf" in self.config.get("dit_quant_scheme", ""):
            gguf_path = ""
            if os.path.isdir(safetensors_path):
                gguf_type = self.config.get("dit_quant_scheme").replace("gguf-", "")
                gguf_files = list(filter(lambda x: gguf_type in x, glob.glob(os.path.join(safetensors_path, "*.gguf"))))
                gguf_path = gguf_files[0]
            else:
                gguf_path = safetensors_path
            weight_dict = self._load_gguf_ckpt(gguf_path)
            return weight_dict

212
213
214
215
        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
216
            safetensors_path = os.path.dirname(safetensors_path)
gushiqiao's avatar
Fix  
gushiqiao committed
217

218
        if self.lazy_load:
219
220
221
222
223
224
            self.lazy_load_path = safetensors_path
            non_block_file = os.path.join(safetensors_path, "non_block.safetensors")
            if os.path.exists(non_block_file):
                safetensors_files = [non_block_file]
            else:
                raise ValueError(f"Non-block file not found in {safetensors_path}, Please check the lazy load model path")
225

gushiqiao's avatar
Fix  
gushiqiao committed
226
        weight_dict = {}
227
228
229
230
        for safetensor_path in safetensors_files:
            if self.config.get("adapter_model_path", None) is not None:
                if self.config["adapter_model_path"] == safetensor_path:
                    continue
yihuiwen's avatar
yihuiwen committed
231

gushiqiao's avatar
Fix  
gushiqiao committed
232
233
234
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
235
236
                    if any(remove_key in k for remove_key in remove_keys):
                        continue
237
238
239
240
241
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
242
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
243
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
244
                        else:
gushiqiao's avatar
gushiqiao committed
245
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
246
                    else:
gushiqiao's avatar
gushiqiao committed
247
                        weight_dict[k] = f.get_tensor(k).to(self.device)
248

249
250
251
252
253
254
255
        if self.config.get("dit_quant_scheme", "Default") == "nvfp4":
            calib_path = os.path.join(safetensors_path, "calib.pt")
            logger.info(f"[CALIB] Loaded calibration data from: {calib_path}")
            calib_data = torch.load(calib_path, map_location="cpu")
            for k, v in calib_data["absmax"].items():
                weight_dict[k.replace(".weight", ".input_absmax")] = v.to(self.device)

256
257
        return weight_dict

yihuiwen's avatar
yihuiwen committed
258
259
260
    def _load_gguf_ckpt(self, gguf_path):
        state_dict = load_gguf_sd_ckpt(gguf_path, to_device=self.device)
        return state_dict
261

lijiaqi2's avatar
lijiaqi2 committed
262
    def _init_weights(self, weight_dict=None):
263
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
264
        # Some layers run with float32 to achieve high accuracy
265
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
266
267
268
269
270
271
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
272
273
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
274
        }
275

lijiaqi2's avatar
lijiaqi2 committed
276
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
277
            is_weight_loader = self._should_load_weights()
278
            if is_weight_loader:
279
                if not self.dit_quantized:
gushiqiao's avatar
gushiqiao committed
280
281
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
282
                else:
gushiqiao's avatar
gushiqiao committed
283
                    # Load quantized weights
284
                    weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
285

286
287
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
288

289
290
291
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
292
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
293
294
        else:
            self.original_weight_dict = weight_dict
295

gushiqiao's avatar
gushiqiao committed
296
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
297
        self.pre_weight = self.pre_weight_class(self.config)
298
299
300
301
        if self.lazy_load:
            self.transformer_weights = self.transformer_weight_class(self.config, self.lazy_load_path)
        else:
            self.transformer_weights = self.transformer_weight_class(self.config)
302
        if not self._should_init_empty_model():
303
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
304

305
306
307
308
309
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
310
        # Load weights into containers
311
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
312
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
313

gushiqiao's avatar
gushiqiao committed
314
315
316
317
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

318
319
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
372
373

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
374

gushiqiao's avatar
gushiqiao committed
375
376
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
377
378
379
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
380
        self.transformer_infer = self.transformer_infer_class(self.config)
381
        if hasattr(self.transformer_infer, "offload_manager"):
382
383
384
385
386
387
388
389
            self._init_offload_manager()

    def _init_offload_manager(self):
        self.transformer_infer.offload_manager.init_cuda_buffer(self.transformer_weights.offload_block_cuda_buffers, self.transformer_weights.offload_phase_cuda_buffers)
        if self.lazy_load:
            self.transformer_infer.offload_manager.init_cpu_buffer(self.transformer_weights.offload_block_cpu_buffers, self.transformer_weights.offload_phase_cpu_buffers)
            if self.config.get("warm_up_cpu_buffers", False):
                self.transformer_infer.offload_manager.warm_up_cpu_buffers(self.transformer_weights.blocks_num)
helloyongyang's avatar
helloyongyang committed
390
391
392

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
393
394
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
395
396
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
397
398
399
400
401
402
403
404
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
405
406
    @torch.no_grad()
    def infer(self, inputs):
407
        if self.cpu_offload:
408
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config["model_cls"]:
409
410
411
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
412
                self.transformer_weights.non_block_weights_to_cuda()
413

414
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
415
416
417
418
419
420
421
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
422
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
423
                else:
helloyongyang's avatar
helloyongyang committed
424
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
425

helloyongyang's avatar
helloyongyang committed
426
427
428
429
430
431
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
432
433
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
434

helloyongyang's avatar
helloyongyang committed
435
436
437
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
438
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
439
440

        if self.cpu_offload:
441
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config["model_cls"]:
442
443
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
444
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
445
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
446

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
447
    @compiled_method()
448
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
449
450
451
452
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
453
454
455
456
457
458
459
460
461

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
462
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
463
464
465
466
467
468
469
470
471

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
472
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
473
474
475
476
477
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
478
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
479

helloyongyang's avatar
helloyongyang committed
480
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
481

482
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] in ["i2v", "s2v"]:
helloyongyang's avatar
helloyongyang committed
483
484
485
486
487
488
489
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
490
491
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
492
493
494
495
496
497
498
499
500

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
501
        return combined_output