model.py 20.3 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
2
import glob
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
35
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
36

37
38
39
40
41
try:
    import gguf
except ImportError:
    gguf = None

helloyongyang's avatar
helloyongyang committed
42

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
43
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
44
45
46
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

47
    def __init__(self, model_path, config, device, model_type="wan2.1"):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
48
        super().__init__()
helloyongyang's avatar
helloyongyang committed
49
50
        self.model_path = model_path
        self.config = config
51
52
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
53
        self.model_type = model_type
helloyongyang's avatar
helloyongyang committed
54
55
56
57
58

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
59

gushiqiao's avatar
gushiqiao committed
60
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
61
        self.dit_quantized = self.config.get("dit_quantized", False)
62
        if self.dit_quantized:
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            assert self.config.get("dit_quant_scheme", "Default") in [
                "Default-Force-FP32",
                "fp8-vllm",
                "int8-vllm",
                "fp8-q8f",
                "int8-q8f",
                "fp8-b128-deepgemm",
                "fp8-sgl",
                "int8-sgl",
                "int8-torchao",
                "nvfp4",
                "mxfp4",
                "mxfp6-mxfp8",
                "mxfp8",
            ]
gushiqiao's avatar
gushiqiao committed
78
        self.device = device
helloyongyang's avatar
helloyongyang committed
79
80
81
82
83
84
85
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
86
87

        if self.config["feature_caching"] == "NoCaching":
88
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
103
104
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
105
        else:
helloyongyang's avatar
helloyongyang committed
106
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
107

gushiqiao's avatar
gushiqiao committed
108
109
110
111
112
113
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
114
115
116
117
118
119
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
120
121
122
                return True
        return False

123
    def _should_init_empty_model(self):
124
        if self.config.get("lora_configs") and self.config["lora_configs"]:
125
126
127
128
129
130
131
132
133
134
135
136
            if self.model_type in ["wan2.1"]:
                return True
            if self.model_type in ["wan2.2_moe_high_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "high_noise_model":
                        return True
            if self.model_type in ["wan2.2_moe_low_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "low_noise_model":
                        return True
        return False

137
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
138
139
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []

140
141
142
143
        if self.device.type == "cuda" and dist.is_initialized():
            device = torch.device("cuda:{}".format(dist.get_rank()))
        else:
            device = self.device
144

145
        with safe_open(file_path, framework="pt", device=str(device)) as f:
146
147
148
149
150
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE()))
                for key in f.keys()
                if not any(remove_key in key for remove_key in remove_keys)
            }
helloyongyang's avatar
helloyongyang committed
151

152
    def _load_ckpt(self, unified_dtype, sensitive_layer):
153
154
155
156
157
158
159
160
161
        if self.config.get("dit_original_ckpt", None):
            safetensors_path = self.config["dit_original_ckpt"]
        else:
            safetensors_path = self.model_path

        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
162

helloyongyang's avatar
helloyongyang committed
163
164
        weight_dict = {}
        for file_path in safetensors_files:
165
            if self.config.get("adapter_model_path", None) is not None:
166
                if self.config["adapter_model_path"] == file_path:
167
                    continue
168
            logger.info(f"Loading weights from {file_path}")
169
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
170
            weight_dict.update(file_weights)
171

helloyongyang's avatar
helloyongyang committed
172
173
        return weight_dict

174
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
175
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []
gushiqiao's avatar
Fix  
gushiqiao committed
176

177
178
179
180
        if self.config.get("dit_quantized_ckpt", None):
            safetensors_path = self.config["dit_quantized_ckpt"]
        else:
            safetensors_path = self.model_path
gushiqiao's avatar
Fix  
gushiqiao committed
181

182
183
184
185
        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
186
            safetensors_path = os.path.dirname(safetensors_path)
gushiqiao's avatar
Fix  
gushiqiao committed
187
188

        weight_dict = {}
189
190
191
192
        for safetensor_path in safetensors_files:
            if self.config.get("adapter_model_path", None) is not None:
                if self.config["adapter_model_path"] == safetensor_path:
                    continue
gushiqiao's avatar
Fix  
gushiqiao committed
193
194
195
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
196
197
                    if any(remove_key in k for remove_key in remove_keys):
                        continue
198
199
200
201
202
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
203
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
204
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
205
                        else:
gushiqiao's avatar
gushiqiao committed
206
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
207
                    else:
gushiqiao's avatar
gushiqiao committed
208
                        weight_dict[k] = f.get_tensor(k).to(self.device)
209

210
211
212
213
214
215
216
        if self.config.get("dit_quant_scheme", "Default") == "nvfp4":
            calib_path = os.path.join(safetensors_path, "calib.pt")
            logger.info(f"[CALIB] Loaded calibration data from: {calib_path}")
            calib_data = torch.load(calib_path, map_location="cpu")
            for k, v in calib_data["absmax"].items():
                weight_dict[k.replace(".weight", ".input_absmax")] = v.to(self.device)

217
218
        return weight_dict

219
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):  # Need rewrite
gushiqiao's avatar
gushiqiao committed
220
        lazy_load_model_path = self.dit_quantized_ckpt
221
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
222
        pre_post_weight_dict = {}
223
224

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
225
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
226
            for k in f.keys():
227
228
229
230
231
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
232
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
233
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
234
                    else:
gushiqiao's avatar
gushiqiao committed
235
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
236
                else:
gushiqiao's avatar
gushiqiao committed
237
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
238

gushiqiao's avatar
gushiqiao committed
239
        return pre_post_weight_dict
240

241
242
243
244
245
246
247
248
    def _load_gguf_ckpt(self):
        gguf_path = self.dit_quantized_ckpt
        logger.info(f"Loading gguf-quant dit model from {gguf_path}")
        reader = gguf.GGUFReader(gguf_path)
        for tensor in reader.tensors:
            # TODO: implement _load_gguf_ckpt
            pass

lijiaqi2's avatar
lijiaqi2 committed
249
    def _init_weights(self, weight_dict=None):
250
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
251
        # Some layers run with float32 to achieve high accuracy
252
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
253
254
255
256
257
258
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
259
260
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
261
        }
262

lijiaqi2's avatar
lijiaqi2 committed
263
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
264
            is_weight_loader = self._should_load_weights()
265
            if is_weight_loader:
266
                if not self.dit_quantized:
gushiqiao's avatar
gushiqiao committed
267
268
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
269
                else:
gushiqiao's avatar
gushiqiao committed
270
                    # Load quantized weights
271
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
272
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
273
                    else:
gushiqiao's avatar
gushiqiao committed
274
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
275

276
277
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
278

279
280
281
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
282
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
283
284
        else:
            self.original_weight_dict = weight_dict
285

gushiqiao's avatar
gushiqiao committed
286
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
287
288
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
289
        if not self._should_init_empty_model():
290
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
291

292
293
294
295
296
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
297
        # Load weights into containers
298
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
299
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
300

gushiqiao's avatar
gushiqiao committed
301
302
303
304
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

305
306
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
359
360

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
361

gushiqiao's avatar
gushiqiao committed
362
363
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
364
365
366
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
367
        self.transformer_infer = self.transformer_infer_class(self.config)
368
369
        if hasattr(self.transformer_infer, "offload_manager"):
            self.transformer_infer.offload_manager.init_cuda_buffer(self.transformer_weights.offload_block_buffers, self.transformer_weights.offload_phase_buffers)
helloyongyang's avatar
helloyongyang committed
370
371
372

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
373
374
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
375
376
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
377
378
379
380
381
382
383
384
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
385
386
    @torch.no_grad()
    def infer(self, inputs):
387
        if self.cpu_offload:
388
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config["model_cls"]:
389
390
391
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
392
                self.transformer_weights.non_block_weights_to_cuda()
393

394
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
395
396
397
398
399
400
401
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
402
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
403
                else:
helloyongyang's avatar
helloyongyang committed
404
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
405

helloyongyang's avatar
helloyongyang committed
406
407
408
409
410
411
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
412
413
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
414

helloyongyang's avatar
helloyongyang committed
415
416
417
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
418
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
419
420

        if self.cpu_offload:
421
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config["model_cls"]:
422
423
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
424
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
425
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
426

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
427
    @compiled_method()
428
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
429
430
431
432
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
433
434
435
436
437
438
439
440
441

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
442
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
443
444
445
446
447
448
449
450
451

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
452
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
453
454
455
456
457
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
458
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
459

helloyongyang's avatar
helloyongyang committed
460
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
461

462
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] in ["i2v", "s2v"]:
helloyongyang's avatar
helloyongyang committed
463
464
465
466
467
468
469
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
470
471
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
472
473
474
475
476
477
478
479
480

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
481
        return combined_output