model.py 21.1 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
import gc
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
2
import glob
3
4
import os

helloyongyang's avatar
helloyongyang committed
5
import torch
6
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
7
import torch.nn.functional as F
PengGao's avatar
PengGao committed
8
9
10
from loguru import logger
from safetensors import safe_open

11
from lightx2v.models.networks.wan.infer.feature_caching.transformer_infer import (
12
13
    WanTransformerInferAdaCaching,
    WanTransformerInferCustomCaching,
Rongjin Yang's avatar
Rongjin Yang committed
14
15
    WanTransformerInferDualBlock,
    WanTransformerInferDynamicBlock,
PengGao's avatar
PengGao committed
16
    WanTransformerInferFirstBlock,
Musisoul's avatar
Musisoul committed
17
    WanTransformerInferMagCaching,
PengGao's avatar
PengGao committed
18
19
20
    WanTransformerInferTaylorCaching,
    WanTransformerInferTeaCaching,
)
21
22
23
from lightx2v.models.networks.wan.infer.offload.transformer_infer import (
    WanOffloadTransformerInfer,
)
PengGao's avatar
PengGao committed
24
25
26
27
28
29
30
31
from lightx2v.models.networks.wan.infer.post_infer import WanPostInfer
from lightx2v.models.networks.wan.infer.pre_infer import WanPreInfer
from lightx2v.models.networks.wan.infer.transformer_infer import (
    WanTransformerInfer,
)
from lightx2v.models.networks.wan.weights.pre_weights import WanPreWeights
from lightx2v.models.networks.wan.weights.transformer_weights import (
    WanTransformerWeights,
32
)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
33
from lightx2v.utils.custom_compiler import CompiledMethodsMixin, compiled_method
34
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
35
from lightx2v.utils.ggml_tensor import load_gguf_sd_ckpt
36
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
37
38


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
39
class WanModel(CompiledMethodsMixin):
helloyongyang's avatar
helloyongyang committed
40
41
42
    pre_weight_class = WanPreWeights
    transformer_weight_class = WanTransformerWeights

43
    def __init__(self, model_path, config, device, model_type="wan2.1"):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
44
        super().__init__()
helloyongyang's avatar
helloyongyang committed
45
46
        self.model_path = model_path
        self.config = config
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
47
        self.run_device = self.config.get("run_device", "cuda")
48
49
        self.cpu_offload = self.config.get("cpu_offload", False)
        self.offload_granularity = self.config.get("offload_granularity", "block")
50
        self.model_type = model_type
helloyongyang's avatar
helloyongyang committed
51
52
53
54
55

        if self.config["seq_parallel"]:
            self.seq_p_group = self.config.get("device_mesh").get_group(mesh_dim="seq_p")
        else:
            self.seq_p_group = None
56

gushiqiao's avatar
gushiqiao committed
57
        self.clean_cuda_cache = self.config.get("clean_cuda_cache", False)
58
        self.dit_quantized = self.config.get("dit_quantized", False)
59
        if self.dit_quantized:
60
61
62
63
64
65
66
67
68
69
70
71
72
73
            assert self.config.get("dit_quant_scheme", "Default") in [
                "Default-Force-FP32",
                "fp8-vllm",
                "int8-vllm",
                "fp8-q8f",
                "int8-q8f",
                "fp8-b128-deepgemm",
                "fp8-sgl",
                "int8-sgl",
                "int8-torchao",
                "nvfp4",
                "mxfp4",
                "mxfp6-mxfp8",
                "mxfp8",
Kane's avatar
Kane committed
74
                "int8-tmo",
yihuiwen's avatar
yihuiwen committed
75
76
77
78
79
80
81
82
83
84
85
86
                "gguf-Q8_0",
                "gguf-Q6_K",
                "gguf-Q5_K_S",
                "gguf-Q5_K_M",
                "gguf-Q5_0",
                "gguf-Q5_1",
                "gguf-Q4_K_S",
                "gguf-Q4_K_M",
                "gguf-Q4_0",
                "gguf-Q4_1",
                "gguf-Q3_K_S",
                "gguf-Q3_K_M",
87
            ]
gushiqiao's avatar
gushiqiao committed
88
        self.device = device
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
        self._init_infer_class()
        self._init_weights()
        self._init_infer()

    def _init_infer_class(self):
        self.pre_infer_class = WanPreInfer
        self.post_infer_class = WanPostInfer
helloyongyang's avatar
helloyongyang committed
96
97

        if self.config["feature_caching"] == "NoCaching":
98
            self.transformer_infer_class = WanTransformerInfer if not self.cpu_offload else WanOffloadTransformerInfer
helloyongyang's avatar
helloyongyang committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        elif self.config["feature_caching"] == "Tea":
            self.transformer_infer_class = WanTransformerInferTeaCaching
        elif self.config["feature_caching"] == "TaylorSeer":
            self.transformer_infer_class = WanTransformerInferTaylorCaching
        elif self.config["feature_caching"] == "Ada":
            self.transformer_infer_class = WanTransformerInferAdaCaching
        elif self.config["feature_caching"] == "Custom":
            self.transformer_infer_class = WanTransformerInferCustomCaching
        elif self.config["feature_caching"] == "FirstBlock":
            self.transformer_infer_class = WanTransformerInferFirstBlock
        elif self.config["feature_caching"] == "DualBlock":
            self.transformer_infer_class = WanTransformerInferDualBlock
        elif self.config["feature_caching"] == "DynamicBlock":
            self.transformer_infer_class = WanTransformerInferDynamicBlock
Musisoul's avatar
Musisoul committed
113
114
        elif self.config["feature_caching"] == "Mag":
            self.transformer_infer_class = WanTransformerInferMagCaching
helloyongyang's avatar
helloyongyang committed
115
        else:
helloyongyang's avatar
helloyongyang committed
116
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config['feature_caching']}")
helloyongyang's avatar
helloyongyang committed
117

gushiqiao's avatar
gushiqiao committed
118
119
120
121
122
123
    def _should_load_weights(self):
        """Determine if current rank should load weights from disk."""
        if self.config.get("device_mesh") is None:
            # Single GPU mode
            return True
        elif dist.is_initialized():
124
125
126
127
128
129
            if self.config.get("load_from_rank0", False):
                # Multi-GPU mode, only rank 0 loads
                if dist.get_rank() == 0:
                    logger.info(f"Loading weights from {self.model_path}")
                    return True
            else:
gushiqiao's avatar
gushiqiao committed
130
131
132
                return True
        return False

133
    def _should_init_empty_model(self):
134
        if self.config.get("lora_configs") and self.config["lora_configs"]:
135
136
137
138
139
140
141
142
143
144
145
146
            if self.model_type in ["wan2.1"]:
                return True
            if self.model_type in ["wan2.2_moe_high_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "high_noise_model":
                        return True
            if self.model_type in ["wan2.2_moe_low_noise"]:
                for lora_config in self.config["lora_configs"]:
                    if lora_config["name"] == "low_noise_model":
                        return True
        return False

147
    def _load_safetensor_to_dict(self, file_path, unified_dtype, sensitive_layer):
148
149
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []

Kane's avatar
Kane committed
150
151
        if (self.device.type == "cuda" or self.device.type == "mlu") and dist.is_initialized():
            device = torch.device("{}:{}".format(self.device.type, dist.get_rank()))
152
153
        else:
            device = self.device
154

155
        with safe_open(file_path, framework="pt", device=str(device)) as f:
156
157
158
159
160
            return {
                key: (f.get_tensor(key).to(GET_DTYPE()) if unified_dtype or all(s not in key for s in sensitive_layer) else f.get_tensor(key).to(GET_SENSITIVE_DTYPE()))
                for key in f.keys()
                if not any(remove_key in key for remove_key in remove_keys)
            }
helloyongyang's avatar
helloyongyang committed
161

162
    def _load_ckpt(self, unified_dtype, sensitive_layer):
163
164
165
166
167
168
169
170
171
        if self.config.get("dit_original_ckpt", None):
            safetensors_path = self.config["dit_original_ckpt"]
        else:
            safetensors_path = self.model_path

        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
172

helloyongyang's avatar
helloyongyang committed
173
174
        weight_dict = {}
        for file_path in safetensors_files:
175
            if self.config.get("adapter_model_path", None) is not None:
176
                if self.config["adapter_model_path"] == file_path:
177
                    continue
178
            logger.info(f"Loading weights from {file_path}")
179
            file_weights = self._load_safetensor_to_dict(file_path, unified_dtype, sensitive_layer)
helloyongyang's avatar
helloyongyang committed
180
            weight_dict.update(file_weights)
181

helloyongyang's avatar
helloyongyang committed
182
183
        return weight_dict

184
    def _load_quant_ckpt(self, unified_dtype, sensitive_layer):
185
        remove_keys = self.remove_keys if hasattr(self, "remove_keys") else []
gushiqiao's avatar
Fix  
gushiqiao committed
186

187
188
189
190
        if self.config.get("dit_quantized_ckpt", None):
            safetensors_path = self.config["dit_quantized_ckpt"]
        else:
            safetensors_path = self.model_path
gushiqiao's avatar
Fix  
gushiqiao committed
191

yihuiwen's avatar
yihuiwen committed
192
193
194
195
196
197
198
199
200
201
202
        if "gguf" in self.config.get("dit_quant_scheme", ""):
            gguf_path = ""
            if os.path.isdir(safetensors_path):
                gguf_type = self.config.get("dit_quant_scheme").replace("gguf-", "")
                gguf_files = list(filter(lambda x: gguf_type in x, glob.glob(os.path.join(safetensors_path, "*.gguf"))))
                gguf_path = gguf_files[0]
            else:
                gguf_path = safetensors_path
            weight_dict = self._load_gguf_ckpt(gguf_path)
            return weight_dict

203
204
205
206
        if os.path.isdir(safetensors_path):
            safetensors_files = glob.glob(os.path.join(safetensors_path, "*.safetensors"))
        else:
            safetensors_files = [safetensors_path]
207
            safetensors_path = os.path.dirname(safetensors_path)
gushiqiao's avatar
Fix  
gushiqiao committed
208
209

        weight_dict = {}
210
211
212
213
        for safetensor_path in safetensors_files:
            if self.config.get("adapter_model_path", None) is not None:
                if self.config["adapter_model_path"] == safetensor_path:
                    continue
yihuiwen's avatar
yihuiwen committed
214

gushiqiao's avatar
Fix  
gushiqiao committed
215
216
217
            with safe_open(safetensor_path, framework="pt") as f:
                logger.info(f"Loading weights from {safetensor_path}")
                for k in f.keys():
218
219
                    if any(remove_key in k for remove_key in remove_keys):
                        continue
220
221
222
223
224
                    if f.get_tensor(k).dtype in [
                        torch.float16,
                        torch.bfloat16,
                        torch.float,
                    ]:
225
                        if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
226
                            weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
227
                        else:
gushiqiao's avatar
gushiqiao committed
228
                            weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
229
                    else:
gushiqiao's avatar
gushiqiao committed
230
                        weight_dict[k] = f.get_tensor(k).to(self.device)
231

232
233
234
235
236
237
238
        if self.config.get("dit_quant_scheme", "Default") == "nvfp4":
            calib_path = os.path.join(safetensors_path, "calib.pt")
            logger.info(f"[CALIB] Loaded calibration data from: {calib_path}")
            calib_data = torch.load(calib_path, map_location="cpu")
            for k, v in calib_data["absmax"].items():
                weight_dict[k.replace(".weight", ".input_absmax")] = v.to(self.device)

239
240
        return weight_dict

241
    def _load_quant_split_ckpt(self, unified_dtype, sensitive_layer):  # Need rewrite
gushiqiao's avatar
gushiqiao committed
242
        lazy_load_model_path = self.dit_quantized_ckpt
243
        logger.info(f"Loading splited quant model from {lazy_load_model_path}")
gushiqiao's avatar
gushiqiao committed
244
        pre_post_weight_dict = {}
245
246

        safetensor_path = os.path.join(lazy_load_model_path, "non_block.safetensors")
gushiqiao's avatar
gushiqiao committed
247
        with safe_open(safetensor_path, framework="pt", device="cpu") as f:
248
            for k in f.keys():
249
250
251
252
253
                if f.get_tensor(k).dtype in [
                    torch.float16,
                    torch.bfloat16,
                    torch.float,
                ]:
254
                    if unified_dtype or all(s not in k for s in sensitive_layer):
gushiqiao's avatar
gushiqiao committed
255
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
256
                    else:
gushiqiao's avatar
gushiqiao committed
257
                        pre_post_weight_dict[k] = f.get_tensor(k).to(GET_SENSITIVE_DTYPE()).to(self.device)
gushiqiao's avatar
Fix  
gushiqiao committed
258
                else:
gushiqiao's avatar
gushiqiao committed
259
                    pre_post_weight_dict[k] = f.get_tensor(k).to(self.device)
260

gushiqiao's avatar
gushiqiao committed
261
        return pre_post_weight_dict
262

yihuiwen's avatar
yihuiwen committed
263
264
265
    def _load_gguf_ckpt(self, gguf_path):
        state_dict = load_gguf_sd_ckpt(gguf_path, to_device=self.device)
        return state_dict
266

lijiaqi2's avatar
lijiaqi2 committed
267
    def _init_weights(self, weight_dict=None):
268
        unified_dtype = GET_DTYPE() == GET_SENSITIVE_DTYPE()
gushiqiao's avatar
Fix  
gushiqiao committed
269
        # Some layers run with float32 to achieve high accuracy
270
        sensitive_layer = {
gushiqiao's avatar
gushiqiao committed
271
272
273
274
275
276
            "norm",
            "embedding",
            "modulation",
            "time",
            "img_emb.proj.0",
            "img_emb.proj.4",
gushiqiao's avatar
gushiqiao committed
277
278
            "before_proj",  # vace
            "after_proj",  # vace
gushiqiao's avatar
gushiqiao committed
279
        }
280

lijiaqi2's avatar
lijiaqi2 committed
281
        if weight_dict is None:
gushiqiao's avatar
gushiqiao committed
282
            is_weight_loader = self._should_load_weights()
283
            if is_weight_loader:
284
                if not self.dit_quantized:
gushiqiao's avatar
gushiqiao committed
285
286
                    # Load original weights
                    weight_dict = self._load_ckpt(unified_dtype, sensitive_layer)
287
                else:
gushiqiao's avatar
gushiqiao committed
288
                    # Load quantized weights
289
                    if not self.config.get("lazy_load", False):
gushiqiao's avatar
gushiqiao committed
290
                        weight_dict = self._load_quant_ckpt(unified_dtype, sensitive_layer)
291
                    else:
gushiqiao's avatar
gushiqiao committed
292
                        weight_dict = self._load_quant_split_ckpt(unified_dtype, sensitive_layer)
293

294
295
            if self.config.get("device_mesh") is not None and self.config.get("load_from_rank0", False):
                weight_dict = self._load_weights_from_rank0(weight_dict, is_weight_loader)
296

297
298
299
            if hasattr(self, "adapter_weights_dict"):
                weight_dict.update(self.adapter_weights_dict)

gushiqiao's avatar
gushiqiao committed
300
            self.original_weight_dict = weight_dict
lijiaqi2's avatar
lijiaqi2 committed
301
302
        else:
            self.original_weight_dict = weight_dict
303

gushiqiao's avatar
gushiqiao committed
304
        # Initialize weight containers
helloyongyang's avatar
helloyongyang committed
305
306
        self.pre_weight = self.pre_weight_class(self.config)
        self.transformer_weights = self.transformer_weight_class(self.config)
307
        if not self._should_init_empty_model():
308
            self._apply_weights()
gushiqiao's avatar
gushiqiao committed
309

310
311
312
313
314
    def _apply_weights(self, weight_dict=None):
        if weight_dict is not None:
            self.original_weight_dict = weight_dict
            del weight_dict
            gc.collect()
gushiqiao's avatar
gushiqiao committed
315
        # Load weights into containers
316
        self.pre_weight.load(self.original_weight_dict)
gushiqiao's avatar
gushiqiao committed
317
        self.transformer_weights.load(self.original_weight_dict)
helloyongyang's avatar
helloyongyang committed
318

gushiqiao's avatar
gushiqiao committed
319
320
321
322
        del self.original_weight_dict
        torch.cuda.empty_cache()
        gc.collect()

323
324
    def _load_weights_from_rank0(self, weight_dict, is_weight_loader):
        logger.info("Loading distributed weights")
gushiqiao's avatar
gushiqiao committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        global_src_rank = 0
        target_device = "cpu" if self.cpu_offload else "cuda"

        if is_weight_loader:
            meta_dict = {}
            for key, tensor in weight_dict.items():
                meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

            obj_list = [meta_dict]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]
        else:
            obj_list = [None]
            dist.broadcast_object_list(obj_list, src=global_src_rank)
            synced_meta_dict = obj_list[0]

        distributed_weight_dict = {}
        for key, meta in synced_meta_dict.items():
            distributed_weight_dict[key] = torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device)

        if target_device == "cuda":
            dist.barrier(device_ids=[torch.cuda.current_device()])

        for key in sorted(synced_meta_dict.keys()):
            if is_weight_loader:
                distributed_weight_dict[key].copy_(weight_dict[key], non_blocking=True)

gushiqiao's avatar
gushiqiao committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            if target_device == "cpu":
                if is_weight_loader:
                    gpu_tensor = distributed_weight_dict[key].cuda()
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()
                else:
                    gpu_tensor = torch.empty_like(distributed_weight_dict[key], device="cuda")
                    dist.broadcast(gpu_tensor, src=global_src_rank)
                    distributed_weight_dict[key].copy_(gpu_tensor.cpu(), non_blocking=True)
                    del gpu_tensor
                    torch.cuda.empty_cache()

                if distributed_weight_dict[key].is_pinned():
                    distributed_weight_dict[key].copy_(distributed_weight_dict[key], non_blocking=True)
            else:
                dist.broadcast(distributed_weight_dict[key], src=global_src_rank)

        if target_device == "cuda":
            torch.cuda.synchronize()
        else:
            for tensor in distributed_weight_dict.values():
                if tensor.is_pinned():
                    tensor.copy_(tensor, non_blocking=False)
gushiqiao's avatar
gushiqiao committed
377
378

        logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
379

gushiqiao's avatar
gushiqiao committed
380
381
        return distributed_weight_dict

helloyongyang's avatar
helloyongyang committed
382
383
384
    def _init_infer(self):
        self.pre_infer = self.pre_infer_class(self.config)
        self.post_infer = self.post_infer_class(self.config)
helloyongyang's avatar
helloyongyang committed
385
        self.transformer_infer = self.transformer_infer_class(self.config)
386
387
        if hasattr(self.transformer_infer, "offload_manager"):
            self.transformer_infer.offload_manager.init_cuda_buffer(self.transformer_weights.offload_block_buffers, self.transformer_weights.offload_phase_buffers)
helloyongyang's avatar
helloyongyang committed
388
389
390

    def set_scheduler(self, scheduler):
        self.scheduler = scheduler
391
392
        self.pre_infer.set_scheduler(scheduler)
        self.post_infer.set_scheduler(scheduler)
helloyongyang's avatar
helloyongyang committed
393
394
        self.transformer_infer.set_scheduler(scheduler)

TorynCurtis's avatar
TorynCurtis committed
395
396
397
398
399
400
401
402
    def to_cpu(self):
        self.pre_weight.to_cpu()
        self.transformer_weights.to_cpu()

    def to_cuda(self):
        self.pre_weight.to_cuda()
        self.transformer_weights.to_cuda()

helloyongyang's avatar
helloyongyang committed
403
404
    @torch.no_grad()
    def infer(self, inputs):
405
        if self.cpu_offload:
406
            if self.offload_granularity == "model" and self.scheduler.step_index == 0 and "wan2.2_moe" not in self.config["model_cls"]:
407
408
409
                self.to_cuda()
            elif self.offload_granularity != "model":
                self.pre_weight.to_cuda()
gushiqiao's avatar
gushiqiao committed
410
                self.transformer_weights.non_block_weights_to_cuda()
411

412
        if self.config["enable_cfg"]:
helloyongyang's avatar
helloyongyang committed
413
414
415
416
417
418
419
            if self.config["cfg_parallel"]:
                # ==================== CFG Parallel Processing ====================
                cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
                assert dist.get_world_size(cfg_p_group) == 2, "cfg_p_world_size must be equal to 2"
                cfg_p_rank = dist.get_rank(cfg_p_group)

                if cfg_p_rank == 0:
helloyongyang's avatar
helloyongyang committed
420
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
helloyongyang's avatar
helloyongyang committed
421
                else:
helloyongyang's avatar
helloyongyang committed
422
                    noise_pred = self._infer_cond_uncond(inputs, infer_condition=False)
helloyongyang's avatar
helloyongyang committed
423

helloyongyang's avatar
helloyongyang committed
424
425
426
427
428
429
                noise_pred_list = [torch.zeros_like(noise_pred) for _ in range(2)]
                dist.all_gather(noise_pred_list, noise_pred, group=cfg_p_group)
                noise_pred_cond = noise_pred_list[0]  # cfg_p_rank == 0
                noise_pred_uncond = noise_pred_list[1]  # cfg_p_rank == 1
            else:
                # ==================== CFG Processing ====================
helloyongyang's avatar
helloyongyang committed
430
431
                noise_pred_cond = self._infer_cond_uncond(inputs, infer_condition=True)
                noise_pred_uncond = self._infer_cond_uncond(inputs, infer_condition=False)
gushiqiao's avatar
gushiqiao committed
432

helloyongyang's avatar
helloyongyang committed
433
434
435
            self.scheduler.noise_pred = noise_pred_uncond + self.scheduler.sample_guide_scale * (noise_pred_cond - noise_pred_uncond)
        else:
            # ==================== No CFG ====================
helloyongyang's avatar
helloyongyang committed
436
            self.scheduler.noise_pred = self._infer_cond_uncond(inputs, infer_condition=True)
437
438

        if self.cpu_offload:
439
            if self.offload_granularity == "model" and self.scheduler.step_index == self.scheduler.infer_steps - 1 and "wan2.2_moe" not in self.config["model_cls"]:
440
441
                self.to_cpu()
            elif self.offload_granularity != "model":
root's avatar
root committed
442
                self.pre_weight.to_cpu()
gushiqiao's avatar
gushiqiao committed
443
                self.transformer_weights.non_block_weights_to_cpu()
gushiqiao's avatar
gushiqiao committed
444

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
445
    @compiled_method()
446
    @torch.no_grad()
helloyongyang's avatar
helloyongyang committed
447
448
449
450
    def _infer_cond_uncond(self, inputs, infer_condition=True):
        self.scheduler.infer_condition = infer_condition

        pre_infer_out = self.pre_infer.infer(self.pre_weight, inputs)
helloyongyang's avatar
helloyongyang committed
451
452
453
454
455
456
457
458
459

        if self.config["seq_parallel"]:
            pre_infer_out = self._seq_parallel_pre_process(pre_infer_out)

        x = self.transformer_infer.infer(self.transformer_weights, pre_infer_out)

        if self.config["seq_parallel"]:
            x = self._seq_parallel_post_process(x)

gushiqiao's avatar
gushiqiao committed
460
        noise_pred = self.post_infer.infer(x, pre_infer_out)[0]
helloyongyang's avatar
helloyongyang committed
461
462
463
464
465
466
467
468
469

        if self.clean_cuda_cache:
            del x, pre_infer_out
            torch.cuda.empty_cache()

        return noise_pred

    @torch.no_grad()
    def _seq_parallel_pre_process(self, pre_infer_out):
helloyongyang's avatar
helloyongyang committed
470
        x = pre_infer_out.x
helloyongyang's avatar
helloyongyang committed
471
472
473
474
475
        world_size = dist.get_world_size(self.seq_p_group)
        cur_rank = dist.get_rank(self.seq_p_group)

        padding_size = (world_size - (x.shape[0] % world_size)) % world_size
        if padding_size > 0:
helloyongyang's avatar
helloyongyang committed
476
            x = F.pad(x, (0, 0, 0, padding_size))
helloyongyang's avatar
helloyongyang committed
477

helloyongyang's avatar
helloyongyang committed
478
        pre_infer_out.x = torch.chunk(x, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
479

480
        if self.config["model_cls"] in ["wan2.2", "wan2.2_audio"] and self.config["task"] in ["i2v", "s2v"]:
helloyongyang's avatar
helloyongyang committed
481
482
483
484
485
486
487
            embed, embed0 = pre_infer_out.embed, pre_infer_out.embed0

            padding_size = (world_size - (embed.shape[0] % world_size)) % world_size
            if padding_size > 0:
                embed = F.pad(embed, (0, 0, 0, padding_size))
                embed0 = F.pad(embed0, (0, 0, 0, 0, 0, padding_size))

helloyongyang's avatar
helloyongyang committed
488
489
            pre_infer_out.embed = torch.chunk(embed, world_size, dim=0)[cur_rank]
            pre_infer_out.embed0 = torch.chunk(embed0, world_size, dim=0)[cur_rank]
helloyongyang's avatar
helloyongyang committed
490
491
492
493
494
495
496
497
498

        return pre_infer_out

    @torch.no_grad()
    def _seq_parallel_post_process(self, x):
        world_size = dist.get_world_size(self.seq_p_group)
        gathered_x = [torch.empty_like(x) for _ in range(world_size)]
        dist.all_gather(gathered_x, x, group=self.seq_p_group)
        combined_output = torch.cat(gathered_x, dim=0)
helloyongyang's avatar
helloyongyang committed
499
        return combined_output