test_functional_tensor.py 35.6 KB
Newer Older
1
import os
2
import unittest
3
import colorsys
4
import math
5

vfdev's avatar
vfdev committed
6
import numpy as np
7
from PIL.Image import NEAREST, BILINEAR, BICUBIC
vfdev's avatar
vfdev committed
8
9
10
11
12

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
13

14
from common_utils import TransformsTester
15

16

17
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
18

19
20
21
    def setUp(self):
        self.device = "cpu"

22
23
24
25
26
27
28
29
30
31
32
33
    def _test_fn_on_batch(self, batch_tensors, fn, **fn_kwargs):
        transformed_batch = fn(batch_tensors, **fn_kwargs)
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            transformed_img = fn(img_tensor, **fn_kwargs)
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]))

        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        self.assertTrue(transformed_batch.allclose(s_transformed_batch))

34
    def test_vflip(self):
35
36
37
38
39
40
41
        script_vflip = torch.jit.script(F.vflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
        self.compareTensorToPIL(vflipped_img, vflipped_pil_img)

42
43
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
44
45
46
47
        self.assertTrue(vflipped_img.equal(vflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.vflip)
48

49
    def test_hflip(self):
50
51
52
53
54
55
56
        script_hflip = torch.jit.script(F.hflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
        self.compareTensorToPIL(hflipped_img, hflipped_pil_img)

57
58
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
59
60
61
62
        self.assertTrue(hflipped_img.equal(hflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.hflip)
63

64
    def test_crop(self):
65
        script_crop = torch.jit.script(F.crop)
66

67
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
84

85
86
87
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)

88
    def test_hsv2rgb(self):
89
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
90
        shape = (3, 100, 150)
91
92
93
94
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
95

96
97
98
99
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
100
101
102
103

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
104
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
105
106
107
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

108
109
110
            s_rgb_img = scripted_fn(hsv_img)
            self.assertTrue(rgb_img.allclose(s_rgb_img))

111
112
113
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._hsv2rgb)

114
    def test_rgb2hsv(self):
115
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
116
        shape = (3, 150, 100)
117
118
119
120
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
121

122
            r, g, b, = rgb_img.unbind(dim=-3)
123
124
125
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
126
127
128
129
130

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

131
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
132

133
134
135
136
137
138
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
139
140
            self.assertLess(max_diff, 1e-5)

141
142
143
            s_hsv_img = scripted_fn(rgb_img)
            self.assertTrue(hsv_img.allclose(s_hsv_img))

144
145
146
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._rgb2hsv)

147
    def test_rgb_to_grayscale(self):
148
149
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

150
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
151
152
153
154
155
156
157
158
159
160

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
            self.assertTrue(s_gray_tensor.equal(gray_tensor))

161
162
163
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)

164
    def test_center_crop(self):
165
166
        script_center_crop = torch.jit.script(F.center_crop)

167
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
168
169
170
171
172
173
174
175

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
176

177
178
179
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])

180
    def test_five_crop(self):
181
182
        script_five_crop = torch.jit.script(F.five_crop)

183
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
184
185
186
187
188
189
190
191
192
193

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

212
    def test_ten_crop(self):
213
214
        script_ten_crop = torch.jit.script(F.ten_crop)

215
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
216
217
218
219
220
221
222
223
224
225

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

244
    def test_pad(self):
245
        script_fn = torch.jit.script(F.pad)
246
        tensor, pil_img = self._create_data(7, 8, device=self.device)
247
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
248

249
250
251
252
253
254
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

255
256
257
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
258
259
                batch_tensors = batch_tensors.to(dt)

260
261
262
263
264
265
266
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
267
                    {"padding_mode": "symmetric"},
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
286

287
288
                    self._test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)

289
    def _test_adjust_fn(self, fn, fn_pil, fn_t, configs, tol=2.0 + 1e-10, agg_method="max"):
vfdev's avatar
vfdev committed
290
291
292
        script_fn = torch.jit.script(fn)
        torch.manual_seed(15)
        tensor, pil_img = self._create_data(26, 34, device=self.device)
293
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
294
295

        for dt in [None, torch.float32, torch.float64]:
296
297
298

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)
299
                batch_tensors = F.convert_image_dtype(batch_tensors, dt)
300

vfdev's avatar
vfdev committed
301
302
303
304
305
306
307
            for config in configs:
                adjusted_tensor = fn_t(tensor, **config)
                adjusted_pil = fn_pil(pil_img, **config)
                scripted_result = script_fn(tensor, **config)
                msg = "{}, {}".format(dt, config)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype, msg=msg)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1], msg=msg)
308
309

                rbg_tensor = adjusted_tensor
vfdev's avatar
vfdev committed
310

311
312
313
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

vfdev's avatar
vfdev committed
314
315
                # Check that max difference does not exceed 2 in [0, 255] range
                # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
316
317
318
319
320
321
                self.approxEqualTensorToPIL(rbg_tensor.float(), adjusted_pil, tol=tol, msg=msg, agg_method=agg_method)

                atol = 1e-6
                if adjusted_tensor.dtype == torch.uint8 and "cuda" in torch.device(self.device).type:
                    atol = 1.0
                self.assertTrue(adjusted_tensor.allclose(scripted_result, atol=atol), msg=msg)
vfdev's avatar
vfdev committed
322

323
324
                self._test_fn_on_batch(batch_tensors, fn, **config)

vfdev's avatar
vfdev committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    def test_adjust_brightness(self):
        self._test_adjust_fn(
            F.adjust_brightness,
            F_pil.adjust_brightness,
            F_t.adjust_brightness,
            [{"brightness_factor": f} for f in [0.1, 0.5, 1.0, 1.34, 2.5]]
        )

    def test_adjust_contrast(self):
        self._test_adjust_fn(
            F.adjust_contrast,
            F_pil.adjust_contrast,
            F_t.adjust_contrast,
            [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_adjust_saturation(self):
        self._test_adjust_fn(
            F.adjust_saturation,
            F_pil.adjust_saturation,
            F_t.adjust_saturation,
            [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]]
        )
348

349
350
351
352
353
354
    def test_adjust_hue(self):
        self._test_adjust_fn(
            F.adjust_hue,
            F_pil.adjust_hue,
            F_t.adjust_hue,
            [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]],
vfdev's avatar
vfdev committed
355
356
            tol=16.1,
            agg_method="max"
357
358
        )

vfdev's avatar
vfdev committed
359
360
361
362
363
364
365
    def test_adjust_gamma(self):
        self._test_adjust_fn(
            F.adjust_gamma,
            F_pil.adjust_gamma,
            F_t.adjust_gamma,
            [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])]
        )
366

367
    def test_resize(self):
vfdev's avatar
vfdev committed
368
        script_fn = torch.jit.script(F_t.resize)
369
        tensor, pil_img = self._create_data(26, 36, device=self.device)
370
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
371

372
373
374
375
376
377
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
378
379
380
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
381
382
                batch_tensors = batch_tensors.to(dt)

383
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
410
411
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
412

413
414
415
416
                    self._test_fn_on_batch(
                        batch_tensors, F.resize, size=script_size, interpolation=interpolation
                    )

417
    def test_resized_crop(self):
418
419
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
420
        tensor, _ = self._create_data(26, 36, device=self.device)
421
422
423
424
425
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
426
        tensor, _ = self._create_data(26, 36, device=self.device)
427
428
429
430
431
432
433
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

434
435
436
437
438
        batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
        self._test_fn_on_batch(
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=0
        )

439
440
441
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
vfdev's avatar
vfdev committed
442

443
444
445
446
447
448
449
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
        out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
465
            )
466
467
468
469
470
471
472
473
474
475
476
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
477

478
479
480
481
482
483
484
485
486
487
488
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
489
                    )
490
                )
491

492
493
494
495
496
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
497

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
519
                    )
520
                )
521

522
523
524
525
526
527
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
528

529
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
530

531
532
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
533

534
535
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [-5, 4], 1.2, [0.0, 0.0]),
            (33, (-4, -8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (-25, [0, 0], 1.2, [0.0, 15.0]),
            (-45, [-10, 0], 0.7, [2.0, 5.0]),
            (-45, [-10, -10], 1.2, [4.0, 5.0]),
            (-90, [0, 0], 1.0, [0.0, 0.0]),
        ]
        for r in [0, ]:
            for a, t, s, sh in test_configs:
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
573
                        )
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
        for r in [0, ]:
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:

                        out_pil_img = F.rotate(pil_img, angle=a, resample=r, expand=e, center=c)
                        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                        for fn in [F.rotate, scripted_rotate]:
                            out_tensor = fn(tensor, angle=a, resample=r, expand=e, center=c).cpu()

                            if out_tensor.dtype != torch.uint8:
                                out_tensor = out_tensor.to(torch.uint8)

                            self.assertEqual(
                                out_tensor.shape,
                                out_pil_tensor.shape,
                                msg="{}: {} vs {}".format(
                                    (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                )
                            )
                            num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                            ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                            # Tolerance : less than 3% of different pixels
                            self.assertLess(
                                ratio_diff_pixels,
                                0.03,
                                msg="{}: {}\n{} vs \n{}".format(
                                    (img_size, r, dt, a, e, c),
                                    ratio_diff_pixels,
                                    out_tensor[0, :7, :7],
                                    out_pil_tensor[0, :7, :7]
                                )
                            )
vfdev's avatar
vfdev committed
644

645
    def test_rotate(self):
vfdev's avatar
vfdev committed
646
647
648
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

649
650
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
651
652
653
654
655
656
657
658

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

659
660
661
662
663
664
665
666
667
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

668
669
670
671
672
673
674
675
676
677
678
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
                self._test_fn_on_batch(
                    batch_tensors, F.rotate, angle=32, resample=0, expand=True, center=center
                )

679
    def _test_perspective(self, tensor, pil_img, scripted_transform, test_configs):
680
681
682
683
684
685
        dt = tensor.dtype
        for r in [0, ]:
            for spoints, epoints in test_configs:
                out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

686
                for fn in [F.perspective, scripted_transform]:
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
                    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% of different pixels
                    self.assertLess(
                        ratio_diff_pixels,
                        0.05,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, dt, spoints, epoints),
                            ratio_diff_pixels,
                            out_tensor[0, :7, :7],
                            out_pil_tensor[0, :7, :7]
                        )
                    )
vfdev's avatar
vfdev committed
705

706
    def test_perspective(self):
707
708
709

        from torchvision.transforms import RandomPerspective

710
        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
711
        scripted_transform = torch.jit.script(F.perspective)
712

713
        for tensor, pil_img in data:
714
715
716
717
718
719
720
721
722
723
724

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

725
726
727
728
729
730
731
732
733
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

734
                self._test_perspective(tensor, pil_img, scripted_transform, test_configs)
735

736
737
738
                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)
739

740
741
742
743
                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(
                        batch_tensors, F.perspective, startpoints=spoints, endpoints=epoints, interpolation=0
                    )
744

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    def test_gaussian_blur(self):
        small_image_tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(self.device)

        large_image_tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(self.device)

        scripted_transform = torch.jit.script(F.gaussian_blur)

        # true_cv2_results = {
        #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
        #     "3_3_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
        #     "3_3_0.5": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
        #     "3_5_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
        #     "3_5_0.5": ...
        #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
        #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
        #     "23_23_1.7": ...
        # }
        p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
        true_cv2_results = torch.load(p)

        for tensor in [small_image_tensor, large_image_tensor]:

            for dt in [None, torch.float32, torch.float64, torch.float16]:
                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for ksize in [(3, 3), [3, 5], (23, 23)]:
                    for sigma in [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)]:

                        _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
                        _sigma = sigma[0] if sigma is not None else None
                        shape = tensor.shape
                        gt_key = "{}_{}_{}__{}_{}_{}".format(
                            shape[-2], shape[-1], shape[-3],
                            _ksize[0], _ksize[1], _sigma
                        )
                        if gt_key not in true_cv2_results:
                            continue

                        true_out = torch.tensor(
                            true_cv2_results[gt_key]
                        ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

                        for fn in [F.gaussian_blur, scripted_transform]:
                            out = fn(tensor, kernel_size=ksize, sigma=sigma)
                            self.assertEqual(true_out.shape, out.shape, msg="{}, {}".format(ksize, sigma))
                            self.assertLessEqual(
                                torch.max(true_out.float() - out.float()),
                                1.0,
                                msg="{}, {}".format(ksize, sigma)
                            )

809

810
811
812
813
814
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
815

816
817
818

if __name__ == '__main__':
    unittest.main()