test_models.py 31.4 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


96
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
97
98
99
100
101
102
103
104
105
106
107
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
114
115
    else:
        expected = torch.load(expected_file)
116
117
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
118
119
120
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


121
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
122
123
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

124
125
126
127
128
129
130
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
131
132
133

    sm = torch.jit.script(nn_module)

134
135
136
137
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
            if unwrapper:
                eager_out = nn_module(*args)
138

139
    with torch.no_grad(), freeze_rng_state():
140
141
142
143
144
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
145
146
147
148
149
150
151
152

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
153
154


155
def _check_fx_compatible(model, inputs, eager_out=None):
156
    model_fx = torch.fx.symbolic_trace(model)
157
158
159
160
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
161
162


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


192
193
194
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
195
script_model_unwrapper = {
196
197
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
198
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
200
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
201
202
203
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
204
    "ssd300_vgg16": lambda x: x[1],
205
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
206
    "fcos_resnet50_fpn": lambda x: x[1],
207
}
208
209


210
211
212
213
214
215
216
217
218
219
220
221
222
223
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
224
225
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
226
    "deeplabv3_mobilenet_v3_large",
227
228
    "fcn_resnet50",
    "fcn_resnet101",
229
    "lraspp_mobilenet_v3_large",
230
    "maskrcnn_resnet50_fpn",
231
232
)

233
234
235
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
236
quantized_flaky_models = ("inception_v3", "resnet50")
237

238

239
240
241
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
242
243
244
245
246
247
248
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
249
    },
250
251
252
253
254
255
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
256
    },
257
258
259
260
261
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
262
    },
Hu Ye's avatar
Hu Ye committed
263
264
265
266
267
268
269
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
270
271
272
273
274
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
275
    },
276
277
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
278
    },
279
280
281
282
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
283
284
    },
}
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
303
304


305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
339
340
341
342
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
343
344
345
}


Anirudh's avatar
Anirudh committed
346
347
348
349
350
351
352
353
354
355
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


356
357
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
358
359
360
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

361
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
362
    params = model1.state_dict()
363
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
364
365
366
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
367
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
368

369
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
370
371
372
373
374
375
376
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

377
378
379
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
380

381
382
383
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
384
385
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
386
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
387
388
389
390
391
392
393
394
395
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
396
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
397
398
399
400
401
402
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


403
404
405
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
406
407
408
409
410
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

411
    model = model_fn(norm_layer=get_gn)
412
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
413
414
415
416
417
418
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
419
420
421
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
422
423
424
425
426
427
428
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
429
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
445
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
446
447
448
449
450


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
451
452
453
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
454
455
456
457
458
459
460
461
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
462
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
477
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
478
479
480
481
482
483
484
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
485
        out = model(model_input)
486

Anirudh's avatar
Anirudh committed
487
    checkOut(out)
488

489
490
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
491
492
493
494
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
495

Anirudh's avatar
Anirudh committed
496
    checkOut(out_cpu)
497

498
499
    _check_input_backprop(model, [x])

500

Anirudh's avatar
Anirudh committed
501
def test_generalizedrcnn_transform_repr():
502

Anirudh's avatar
Anirudh committed
503
504
505
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
506

507
508
509
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
510

Anirudh's avatar
Anirudh committed
511
    # Check integrity of object __repr__ attribute
512
513
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
514
515
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
516
517
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
518
519


520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


549
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
550
@pytest.mark.parametrize("dev", cpu_and_gpu())
551
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
552
553
    set_rng_seed(0)
    defaults = {
554
555
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
556
    }
557
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
558
    kwargs = {**defaults, **_model_params.get(model_name, {})}
559
    num_classes = kwargs.get("num_classes")
560
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
561

562
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
563
564
565
566
567
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
568
    assert out.shape[-1] == num_classes
569
570
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
571
572
573
574
575
576
577
578

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
579

580
581
    _check_input_backprop(model, x)

582

583
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
584
@pytest.mark.parametrize("dev", cpu_and_gpu())
585
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
586
587
    set_rng_seed(0)
    defaults = {
588
589
590
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
591
    }
592
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
593
    kwargs = {**defaults, **_model_params.get(model_name, {})}
594
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
595

596
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
597
598
599
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
600
    out = model(x)
Anirudh's avatar
Anirudh committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

620
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
621

622
623
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
624
625
626

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
627
            out = model(x)
Anirudh's avatar
Anirudh committed
628
629
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
630
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
631
632

    if not full_validation:
633
        msg = (
634
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
635
636
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
637
            "significant changes to the codebase."
638
        )
Anirudh's avatar
Anirudh committed
639
640
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
641

642
643
    _check_input_backprop(model, x)

644

645
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
646
@pytest.mark.parametrize("dev", cpu_and_gpu())
647
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
648
649
    set_rng_seed(0)
    defaults = {
650
651
652
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
653
    }
654
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
655
    kwargs = {**defaults, **_model_params.get(model_name, {})}
656
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
657

658
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
659
660
661
662
663
664
665
666
667
668
669
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
670
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
685
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
708
709
710
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
711
712
713
714
715
716
717
718
719
720

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
721
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
722
723
724
725
726
727
728
729
730

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
731
        msg = (
732
            f"The output of {test_detection_model.__name__} could only be partially validated. "
733
734
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
735
            "significant changes to the codebase."
736
        )
Anirudh's avatar
Anirudh committed
737
738
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
739

740
741
    _check_input_backprop(model, model_input)

742

743
744
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
745
    set_rng_seed(0)
746
    model = model_fn(num_classes=50, pretrained_backbone=False)
Anirudh's avatar
Anirudh committed
747
748
749
750
751
752
753
754
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
755
    targets = [{"boxes": 0.0}]
756
    with pytest.raises(TypeError):
Anirudh's avatar
Anirudh committed
757
758
759
760
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
761
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
762
763
764
765
766
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
767
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
768
769
    with pytest.raises(ValueError):
        model(x, targets=targets)
770

771

772
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
773
@pytest.mark.parametrize("dev", cpu_and_gpu())
774
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
775
776
777
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
778
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
779
    # test both basicblock and Bottleneck
780
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
781
782
783
784
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
785
786
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
787
788
789
790
791
792
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
793

794
795
    _check_input_backprop(model, x)

796

797
798
799
800
801
802
803
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
804
805
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
806
    set_rng_seed(0)
807
    defaults = {
808
        "num_classes": 5,
809
810
811
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
812
    }
813
    model_name = model_fn.__name__
814
    kwargs = {**defaults, **_model_params.get(model_name, {})}
815
    input_shape = kwargs.pop("input_shape")
816
817

    # First check if quantize=True provides models that can run with input data
818
    model = model_fn(**kwargs)
819
    model.eval()
820
    x = torch.rand(input_shape)
821
822
823
824
825
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
826
827
828
829
830
831
832
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
833

834
    kwargs["quantize"] = False
835
    for eval_mode in [True, False]:
836
        model = model_fn(**kwargs)
837
838
        if eval_mode:
            model.eval()
839
            model.qconfig = torch.ao.quantization.default_qconfig
840
841
        else:
            model.train()
842
            model.qconfig = torch.ao.quantization.default_qat_qconfig
843

844
        model.fuse_model(is_qat=not eval_mode)
845
        if eval_mode:
846
            torch.ao.quantization.prepare(model, inplace=True)
847
        else:
848
            torch.ao.quantization.prepare_qat(model, inplace=True)
849
850
            model.eval()

851
        torch.ao.quantization.convert(model, inplace=True)
852
853


854
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
855
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
856
    model_name = model_fn.__name__
857
858
859
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
860
        model = model_fn(pretrained=False, pretrained_backbone=True, trainable_backbone_layers=trainable_layers)
861
862
863
864
865

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


894
if __name__ == "__main__":
895
    pytest.main([__file__])