functional.py 53.4 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
58
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
59
60
61


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
109
110
111
        if pic.ndim == 2:
            pic = pic[:, :, None]

112
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
113
        # backward compatibility
114
115
116
117
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
118
119
120
121
122
123
124
125
126
127
128

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
129
130
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
131
132
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
133
134
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
135
136

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
137
    # put it from HWC to CHW format
138
    img = img.permute((2, 0, 1)).contiguous()
139
140
141
142
143
144
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


145
146
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
147
    This function does not support torchscript.
148

vfdev's avatar
vfdev committed
149
    See :class:`~torchvision.transforms.PILToTensor` for more details.
150
151
152
153
154
155
156

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
157
    if not F_pil._is_pil_image(pic):
158
159
160
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
161
162
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
163
164
165
166
167
168
169
170
171
172
173
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


174
175
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
176
    This function does not support PIL Image.
177
178
179
180
181
182

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
183
        Tensor: Converted image
184
185
186
187
188
189
190
191
192
193
194
195

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
196
197
198
199
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
200
201


202
def to_pil_image(pic, mode=None):
203
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
204

205
    See :class:`~torchvision.transforms.ToPILImage` for more details.
206
207
208
209
210

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

211
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
212
213
214
215

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
216
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
217
218
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
219
220
221
222
223
224
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
225
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
226

227
228
229
230
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
231
232
233
234
235
236
237
238
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

239
240
241
242
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

243
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
244
    if isinstance(pic, torch.Tensor):
245
246
247
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
248
249
250
251
252
253
254
255
256
257

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
258
        elif npimg.dtype == np.int16:
259
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int32:
261
262
263
264
265
266
267
268
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
269
270
271
272
273
274
275
276
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

277
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
278
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


297
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
298
    """Normalize a tensor image with mean and standard deviation.
299
    This transform does not support PIL Image.
300

301
    .. note::
surgan12's avatar
surgan12 committed
302
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
303

304
    See :class:`~torchvision.transforms.Normalize` for more details.
305
306

    Args:
307
        tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
308
        mean (sequence): Sequence of means for each channel.
309
        std (sequence): Sequence of standard deviations for each channel.
310
        inplace(bool,optional): Bool to make this operation inplace.
311
312
313
314

    Returns:
        Tensor: Normalized Tensor image.
    """
315
316
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
317

318
319
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
320
                         '{}.'.format(tensor.size()))
321

surgan12's avatar
surgan12 committed
322
323
324
    if not inplace:
        tensor = tensor.clone()

325
326
327
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
328
329
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
330
    if mean.ndim == 1:
331
        mean = mean.view(-1, 1, 1)
332
    if std.ndim == 1:
333
        std = std.view(-1, 1, 1)
334
    tensor.sub_(mean).div_(std)
335
    return tensor
336
337


338
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR) -> Tensor:
vfdev's avatar
vfdev committed
339
    r"""Resize the input image to the given size.
340
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
341
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
342
343

    Args:
vfdev's avatar
vfdev committed
344
        img (PIL Image or Tensor): Image to be resized.
345
346
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
347
            the smaller edge of the image will be matched to this number maintaining
348
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
349
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
350
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
351
352
353
354
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
355
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
356
357

    Returns:
vfdev's avatar
vfdev committed
358
        PIL Image or Tensor: Resized image.
359
    """
360
361
362
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
363
364
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
365
366
367
        )
        interpolation = _interpolation_modes_from_int(interpolation)

368
369
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
370

vfdev's avatar
vfdev committed
371
    if not isinstance(img, torch.Tensor):
372
373
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.resize(img, size=size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
374

375
    return F_t.resize(img, size=size, interpolation=interpolation.value)
376
377
378
379
380
381
382
383


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


384
385
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
386
    If the image is torch Tensor, it is expected
387
388
389
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
390
391

    Args:
392
        img (PIL Image or Tensor): Image to be padded.
393
394
395
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
396
            this is the padding for the left, top, right and bottom borders respectively.
397
398
399
400
401
402
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
403
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
404
405
406

            - constant: pads with a constant value, this value is specified with fill

407
408
            - edge: pads with the last value on the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
409
410
411
412
413
414
415
416
417
418

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
419
420

    Returns:
421
        PIL Image or Tensor: Padded image.
422
    """
423
424
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
425

426
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
427
428


vfdev's avatar
vfdev committed
429
430
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
431
432
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
433

434
    Args:
vfdev's avatar
vfdev committed
435
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
436
437
438
439
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
440

441
    Returns:
vfdev's avatar
vfdev committed
442
        PIL Image or Tensor: Cropped image.
443
444
    """

vfdev's avatar
vfdev committed
445
446
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
447

vfdev's avatar
vfdev committed
448
    return F_t.crop(img, top, left, height, width)
449

vfdev's avatar
vfdev committed
450
451
452

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
453
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
454
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
455

456
    Args:
vfdev's avatar
vfdev committed
457
        img (PIL Image or Tensor): Image to be cropped.
458
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
459
460
            it is used for both directions.

461
    Returns:
vfdev's avatar
vfdev committed
462
        PIL Image or Tensor: Cropped image.
463
    """
464
465
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
466
467
468
469
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
470
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
471

472
473
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
474
    return crop(img, crop_top, crop_left, crop_height, crop_width)
475
476


477
def resized_crop(
478
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
479
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
480
481
) -> Tensor:
    """Crop the given image and resize it to desired size.
482
    If the image is torch Tensor, it is expected
483
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
484

485
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
486
487

    Args:
488
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
489
490
491
492
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
493
        size (sequence or int): Desired output size. Same semantics as ``resize``.
494
495
496
497
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
498
499
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

500
    Returns:
501
        PIL Image or Tensor: Cropped image.
502
    """
503
    img = crop(img, top, left, height, width)
504
505
506
507
    img = resize(img, size, interpolation)
    return img


508
def hflip(img: Tensor) -> Tensor:
509
    """Horizontally flip the given image.
510
511

    Args:
vfdev's avatar
vfdev committed
512
        img (PIL Image or Tensor): Image to be flipped. If img
513
            is a Tensor, it is expected to be in [..., H, W] format,
514
            where ... means it can have an arbitrary number of leading
515
            dimensions.
516
517

    Returns:
vfdev's avatar
vfdev committed
518
        PIL Image or Tensor:  Horizontally flipped image.
519
    """
520
521
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
522

523
    return F_t.hflip(img)
524
525


526
527
528
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
529
530
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
531
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
532
533
534
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
535
536
537
538
539
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

540
541
542
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
543
544
545
546
547
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
548

549
550
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
551

552
553
    output: List[float] = res.squeeze(1).tolist()
    return output
554
555


556
557
558
559
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
560
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
561
        fill: Optional[List[float]] = None
562
563
) -> Tensor:
    """Perform perspective transform of the given image.
564
    If the image is torch Tensor, it is expected
565
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
566
567

    Args:
568
569
570
571
572
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
573
574
575
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
576
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
577
578
579
580
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
581
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
582

583
    Returns:
584
        PIL Image or Tensor: transformed Image.
585
    """
586

587
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
588

589
590
591
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
592
593
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
594
595
596
        )
        interpolation = _interpolation_modes_from_int(interpolation)

597
598
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
599

600
    if not isinstance(img, torch.Tensor):
601
602
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
603

604
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
605
606


607
def vflip(img: Tensor) -> Tensor:
608
    """Vertically flip the given image.
609
610

    Args:
vfdev's avatar
vfdev committed
611
        img (PIL Image or Tensor): Image to be flipped. If img
612
            is a Tensor, it is expected to be in [..., H, W] format,
613
            where ... means it can have an arbitrary number of leading
614
            dimensions.
615
616

    Returns:
617
        PIL Image or Tensor:  Vertically flipped image.
618
    """
619
620
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
621

622
    return F_t.vflip(img)
623
624


vfdev's avatar
vfdev committed
625
626
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
627
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
628
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
629
630
631
632
633
634

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
635
636
637
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
638
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
639

640
    Returns:
641
642
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
643
644
645
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
646
647
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
648

vfdev's avatar
vfdev committed
649
650
651
652
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
653
654
655
656
657
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
658
659
660
661
662
663
664
665
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
666
667


vfdev's avatar
vfdev committed
668
669
670
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
671
    flipped version of these (horizontal flipping is used by default).
672
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
673
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
674
675
676
677
678

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

679
    Args:
vfdev's avatar
vfdev committed
680
        img (PIL Image or Tensor): Image to be cropped.
681
        size (sequence or int): Desired output size of the crop. If size is an
682
            int instead of sequence like (h, w), a square crop (size, size) is
683
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
684
        vertical_flip (bool): Use vertical flipping instead of horizontal
685
686

    Returns:
687
688
689
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
690
691
692
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
693
694
695
696
697
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
698
699
700
701
702
703
704
705
706
707
708
709

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


710
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
711
    """Adjust brightness of an image.
712
713

    Args:
vfdev's avatar
vfdev committed
714
        img (PIL Image or Tensor): Image to be adjusted.
715
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
716
        where ... means it can have an arbitrary number of leading dimensions.
717
718
719
720
721
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
722
        PIL Image or Tensor: Brightness adjusted image.
723
    """
724
725
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
726

727
    return F_t.adjust_brightness(img, brightness_factor)
728
729


730
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
731
    """Adjust contrast of an image.
732
733

    Args:
vfdev's avatar
vfdev committed
734
        img (PIL Image or Tensor): Image to be adjusted.
735
736
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
737
738
739
740
741
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
742
        PIL Image or Tensor: Contrast adjusted image.
743
    """
744
745
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
746

747
    return F_t.adjust_contrast(img, contrast_factor)
748
749


750
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
751
752
753
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
754
        img (PIL Image or Tensor): Image to be adjusted.
755
756
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
757
758
759
760
761
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
762
        PIL Image or Tensor: Saturation adjusted image.
763
    """
764
765
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
766

767
    return F_t.adjust_saturation(img, saturation_factor)
768
769


770
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
771
772
773
774
775
776
777
778
779
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

780
781
782
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
783
784

    Args:
785
        img (PIL Image or Tensor): Image to be adjusted.
786
787
788
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
        If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
789
790
791
792
793
794
795
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
796
        PIL Image or Tensor: Hue adjusted image.
797
    """
798
799
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
800

801
    return F_t.adjust_hue(img, hue_factor)
802
803


804
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
805
    r"""Perform gamma correction on an image.
806
807
808
809

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

810
811
812
813
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
814

815
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
816
817

    Args:
818
        img (PIL Image or Tensor): PIL Image to be adjusted.
819
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
820
        where ... means it can have an arbitrary number of leading dimensions.
821
        If img is PIL Image, modes with transparency (alpha channel) are not supported.
822
823
824
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
825
        gain (float): The constant multiplier.
826
827
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
828
    """
829
830
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
831

832
    return F_t.adjust_gamma(img, gamma, gain)
833
834


vfdev's avatar
vfdev committed
835
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
836
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
837
) -> List[float]:
838
839
840
841
842
843
844
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
845
846
847
848
849
850
851
852
853
854
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
855
856
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

857
858
859
860
861
862
863
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
864
865
866
867
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
868
869

    # Inverted rotation matrix with scale and shear
870
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
871
872
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
873
874

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
875
876
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
877
878

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
879
880
    matrix[2] += cx
    matrix[5] += cy
881

vfdev's avatar
vfdev committed
882
    return matrix
883

vfdev's avatar
vfdev committed
884

vfdev's avatar
vfdev committed
885
def rotate(
886
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
887
        expand: bool = False, center: Optional[List[int]] = None,
888
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
889
890
) -> Tensor:
    """Rotate the image by angle.
891
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
892
893
894
895
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
896
        angle (number): rotation angle value in degrees, counter-clockwise.
897
898
899
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
900
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
901
902
903
904
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
905
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
906
            Default is the center of the image.
907
908
909
910
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
911
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
vfdev's avatar
vfdev committed
912
913
914
915
916
917
918

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
919
920
921
922
923
924
925
926
927
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
928
929
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
930
931
932
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
933
934
935
936
937
938
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

939
940
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
941

vfdev's avatar
vfdev committed
942
    if not isinstance(img, torch.Tensor):
943
944
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
945
946
947
948

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
949
950
951
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
952
953
954
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
955
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
956
957


vfdev's avatar
vfdev committed
958
959
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
960
961
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
962
963
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
964
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
965
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
966
967

    Args:
vfdev's avatar
vfdev committed
968
        img (PIL Image or Tensor): image to transform.
969
970
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
971
        scale (float): overall scale
972
973
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
974
            the second value corresponds to a shear parallel to the y axis.
975
976
977
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
978
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
979
980
981
982
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
983
984
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
985
            Please use the ``fill`` parameter instead.
986
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
987
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
988
989
990

    Returns:
        PIL Image or Tensor: Transformed image.
991
    """
992
993
994
995
996
997
998
999
1000
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1001
1002
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1003
1004
1005
1006
1007
1008
1009
1010
1011
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1027
1028
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1029

vfdev's avatar
vfdev committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1055
1056
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1057

1058
1059
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1060
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1061
1062


1063
@torch.jit.unused
1064
def to_grayscale(img, num_output_channels=1):
1065
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1066
    This transform does not support torch Tensor.
1067
1068

    Args:
1069
        img (PIL Image): PIL Image to be converted to grayscale.
1070
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1071
1072

    Returns:
1073
1074
1075
1076
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
1077
    """
1078
1079
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1080

1081
1082
1083
1084
1085
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1086
1087
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1107
1108


1109
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1110
    """ Erase the input Tensor Image with given value.
1111
    This transform does not support PIL Image.
1112
1113
1114
1115
1116
1117
1118
1119

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1120
        inplace(bool, optional): For in-place operations. By default is set False.
1121
1122
1123
1124
1125
1126
1127

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1128
1129
1130
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1131
    img[..., i:i + h, j:j + w] = v
1132
    return img
1133
1134
1135


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1136
1137
1138
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1139
1140
1141
1142
1143

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1144
            In torchscript mode kernel_size as single int is not supported, use a sequence of length 1: ``[ksize, ]``.
1145
1146
1147
1148
1149
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
            Default, None. In torchscript mode sigma as single float is
1150
            not supported, use a sequence of length 1: ``[sigma, ]``.
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1192
1193
1194


def invert(img: Tensor) -> Tensor:
1195
    """Invert the colors of an RGB/grayscale image.
1196
1197
1198

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1199
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1200
1201
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1213
    """Posterize an image by reducing the number of bits for each color channel.
1214
1215
1216

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1217
            If img is torch Tensor, it should be of type torch.uint8 and
1218
1219
1220
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1235
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1236
1237
1238

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1239
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1240
1241
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1253
    """Adjust the sharpness of an image.
1254
1255
1256

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1257
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1258
        where ... means it can have an arbitrary number of leading dimensions.
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1273
    """Maximize contrast of an image by remapping its
1274
1275
1276
1277
1278
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1279
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1280
1281
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1293
    """Equalize the histogram of an image by applying
1294
1295
1296
1297
1298
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1299
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1300
1301
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1302
1303
1304
1305
1306
1307
1308
1309

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)