train.py 13.4 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
from coco_utils import get_coco
32
33
from engine import evaluate, train_one_epoch
from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler
34
35
from torchvision.transforms import InterpolationMode
from transforms import SimpleCopyPaste
36
37


38
39
40
41
42
def copypaste_collate_fn(batch):
    copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR)
    return copypaste(*utils.collate_fn(batch))


43
44
def get_dataset(is_train, args):
    image_set = "train" if is_train else "val"
45
46
47
48
49
50
51
52
53
54
    num_classes, mode = {"coco": (91, "instances"), "coco_kp": (2, "person_keypoints")}[args.dataset]
    with_masks = "mask" in args.model
    ds = get_coco(
        root=args.data_path,
        image_set=image_set,
        transforms=get_transform(is_train, args),
        mode=mode,
        use_v2=args.use_v2,
        with_masks=with_masks,
    )
55
56
57
    return ds, num_classes


58
59
60
61
62
def get_transform(is_train, args):
    if is_train:
        return presets.DetectionPresetTrain(
            data_augmentation=args.data_augmentation, backend=args.backend, use_v2=args.use_v2
        )
63
64
65
66
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
67
    else:
68
        return presets.DetectionPresetEval(backend=args.backend, use_v2=args.use_v2)
69
70


71
72
def get_args_parser(add_help=True):
    import argparse
73
74
75

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

76
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
77
78
79
80
81
82
    parser.add_argument(
        "--dataset",
        default="coco",
        type=str,
        help="dataset name. Use coco for object detection and instance segmentation and coco_kp for Keypoint detection",
    )
83
84
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
85
86
87
88
89
90
91
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
92
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
93
94
95
96
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
97
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
98
99
100
101
102
103
104
105
106
107
108
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
109
110
111
112
113
114
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
115
116
117
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
132
133
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
134
135
136
137
138
139
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
140
141
142
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
143
144
145
146
147
148
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
149
150
151
152
153
154
155
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

156
157
158
159
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

160
    # distributed training parameters
161
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
162
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
163
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
164
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
165

166
167
168
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

169
170
171
172
173
174
175
    # Use CopyPaste augmentation training parameter
    parser.add_argument(
        "--use-copypaste",
        action="store_true",
        help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
    )

176
177
178
    parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
    parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms")

179
180
181
    return parser


182
def main(args):
183
184
    if args.backend.lower() == "tv_tensor" and not args.use_v2:
        raise ValueError("Use --use-v2 if you want to use the tv_tensor backend.")
185
186
187
188
189
190
    if args.dataset not in ("coco", "coco_kp"):
        raise ValueError(f"Dataset should be coco or coco_kp, got {args.dataset}")
    if "keypoint" in args.model and args.dataset != "coco_kp":
        raise ValueError("Oops, if you want Keypoint detection, set --dataset coco_kp")
    if args.dataset == "coco_kp" and args.use_v2:
        raise ValueError("KeyPoint detection doesn't support V2 transforms yet")
191

192
193
194
    if args.output_dir:
        utils.mkdir(args.output_dir)

195
196
197
198
199
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

200
201
202
    if args.use_deterministic_algorithms:
        torch.use_deterministic_algorithms(True)

203
204
205
    # Data loading code
    print("Loading data")

206
207
    dataset, num_classes = get_dataset(is_train=True, args=args)
    dataset_test, _ = get_dataset(is_train=False, args=args)
208
209
210
211

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
212
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
213
214
215
216
217
218
219
220
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
221
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
222

223
224
225
226
227
228
229
    train_collate_fn = utils.collate_fn
    if args.use_copypaste:
        if args.data_augmentation != "lsj":
            raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")

        train_collate_fn = copypaste_collate_fn

230
    data_loader = torch.utils.data.DataLoader(
231
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
232
    )
233
234

    data_loader_test = torch.utils.data.DataLoader(
235
236
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
237
238

    print("Creating model")
239
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
240
241
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
242
    if "rcnn" in args.model:
243
244
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
245
246
    model = torchvision.models.get_model(
        args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
247
    )
248
    model.to(device)
249
250
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
251
252
253
254
255
256

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
277

278
279
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

280
    args.lr_scheduler = args.lr_scheduler.lower()
281
    if args.lr_scheduler == "multisteplr":
282
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
283
    elif args.lr_scheduler == "cosineannealinglr":
284
285
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
286
        raise RuntimeError(
287
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
288
        )
Francisco Massa's avatar
Francisco Massa committed
289

290
    if args.resume:
291
292
293
294
295
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
296
297
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
298

299
    if args.test_only:
300
        torch.backends.cudnn.deterministic = True
301
302
303
304
305
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
306
    for epoch in range(args.start_epoch, args.epochs):
307
308
        if args.distributed:
            train_sampler.set_epoch(epoch)
309
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
310
311
        lr_scheduler.step()
        if args.output_dir:
312
            checkpoint = {
313
314
315
316
317
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
318
            }
319
320
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
321
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
322
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
323
324
325
326
327
328

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
329
    print(f"Training time {total_time_str}")
330
331
332


if __name__ == "__main__":
333
    args = get_args_parser().parse_args()
334
    main(args)