train.py 12.3 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
from coco_utils import get_coco, get_coco_kp
32
33
from engine import evaluate, train_one_epoch
from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler
34
35
from torchvision.transforms import InterpolationMode
from transforms import SimpleCopyPaste
36
37


38
39
40
41
42
def copypaste_collate_fn(batch):
    copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR)
    return copypaste(*utils.collate_fn(batch))


flauted's avatar
flauted committed
43
def get_dataset(name, image_set, transform, data_path):
44
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
45
46
47
48
49
50
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


51
52
def get_transform(train, args):
    if train:
53
54
55
56
57
        return presets.DetectionPresetTrain(data_augmentation=args.data_augmentation)
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
58
    else:
59
        return presets.DetectionPresetEval()
60
61


62
63
def get_args_parser(add_help=True):
    import argparse
64
65
66

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

67
68
69
70
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
71
72
73
74
75
76
77
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
78
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
79
80
81
82
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
83
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
84
85
86
87
88
89
90
91
92
93
94
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
95
96
97
98
99
100
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
101
102
103
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
118
119
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
120
121
122
123
124
125
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
126
127
128
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
129
130
131
132
133
134
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
135
136
137
138
139
140
141
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

142
143
144
145
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

146
    # distributed training parameters
147
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
148
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
149
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
150
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
151

152
153
154
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

155
156
157
158
159
160
161
    # Use CopyPaste augmentation training parameter
    parser.add_argument(
        "--use-copypaste",
        action="store_true",
        help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
    )

162
163
164
    return parser


165
def main(args):
166
167
168
    if args.output_dir:
        utils.mkdir(args.output_dir)

169
170
171
172
173
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

174
175
176
    if args.use_deterministic_algorithms:
        torch.use_deterministic_algorithms(True)

177
178
179
    # Data loading code
    print("Loading data")

180
181
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
182
183
184
185

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
186
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
187
188
189
190
191
192
193
194
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
195
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
196

197
198
199
200
201
202
203
    train_collate_fn = utils.collate_fn
    if args.use_copypaste:
        if args.data_augmentation != "lsj":
            raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")

        train_collate_fn = copypaste_collate_fn

204
    data_loader = torch.utils.data.DataLoader(
205
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
206
    )
207
208

    data_loader_test = torch.utils.data.DataLoader(
209
210
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
211
212

    print("Creating model")
213
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
214
215
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
216
    if "rcnn" in args.model:
217
218
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
219
220
    model = torchvision.models.get_model(
        args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
221
    )
222
    model.to(device)
223
224
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
225
226
227
228
229
230

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
251

252
253
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

254
    args.lr_scheduler = args.lr_scheduler.lower()
255
    if args.lr_scheduler == "multisteplr":
256
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
257
    elif args.lr_scheduler == "cosineannealinglr":
258
259
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
260
        raise RuntimeError(
261
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
262
        )
Francisco Massa's avatar
Francisco Massa committed
263

264
    if args.resume:
265
266
267
268
269
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
270
271
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
272

273
    if args.test_only:
274
        torch.backends.cudnn.deterministic = True
275
276
277
278
279
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
280
    for epoch in range(args.start_epoch, args.epochs):
281
282
        if args.distributed:
            train_sampler.set_epoch(epoch)
283
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
284
285
        lr_scheduler.step()
        if args.output_dir:
286
            checkpoint = {
287
288
289
290
291
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
292
            }
293
294
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
295
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
296
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
297
298
299
300
301
302

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
303
    print(f"Training time {total_time_str}")
304
305
306


if __name__ == "__main__":
307
    args = get_args_parser().parse_args()
308
    main(args)