train.py 12.7 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
from coco_utils import get_coco, get_coco_kp
32
33
from engine import evaluate, train_one_epoch
from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler
34
35
from torchvision.transforms import InterpolationMode
from transforms import SimpleCopyPaste
36
37


38
39
40
41
42
def copypaste_collate_fn(batch):
    copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR)
    return copypaste(*utils.collate_fn(batch))


43
44
45
46
def get_dataset(is_train, args):
    image_set = "train" if is_train else "val"
    paths = {"coco": (args.data_path, get_coco, 91), "coco_kp": (args.data_path, get_coco_kp, 2)}
    p, ds_fn, num_classes = paths[args.dataset]
47

48
    ds = ds_fn(p, image_set=image_set, transforms=get_transform(is_train, args), use_v2=args.use_v2)
49
50
51
    return ds, num_classes


52
53
54
55
56
def get_transform(is_train, args):
    if is_train:
        return presets.DetectionPresetTrain(
            data_augmentation=args.data_augmentation, backend=args.backend, use_v2=args.use_v2
        )
57
58
59
60
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
61
    else:
62
        return presets.DetectionPresetEval(backend=args.backend, use_v2=args.use_v2)
63
64


65
66
def get_args_parser(add_help=True):
    import argparse
67
68
69

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

70
71
72
73
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
74
75
76
77
78
79
80
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
81
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
82
83
84
85
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
86
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
87
88
89
90
91
92
93
94
95
96
97
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
98
99
100
101
102
103
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
104
105
106
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
121
122
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
123
124
125
126
127
128
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
129
130
131
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
132
133
134
135
136
137
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
138
139
140
141
142
143
144
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

145
146
147
148
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

149
    # distributed training parameters
150
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
151
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
152
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
153
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
154

155
156
157
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

158
159
160
161
162
163
164
    # Use CopyPaste augmentation training parameter
    parser.add_argument(
        "--use-copypaste",
        action="store_true",
        help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
    )

165
166
167
    parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive")
    parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms")

168
169
170
    return parser


171
def main(args):
172
173
174
    if args.backend.lower() == "datapoint" and not args.use_v2:
        raise ValueError("Use --use-v2 if you want to use the datapoint backend.")

175
176
177
    if args.output_dir:
        utils.mkdir(args.output_dir)

178
179
180
181
182
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

183
184
185
    if args.use_deterministic_algorithms:
        torch.use_deterministic_algorithms(True)

186
187
188
    # Data loading code
    print("Loading data")

189
190
    dataset, num_classes = get_dataset(is_train=True, args=args)
    dataset_test, _ = get_dataset(is_train=False, args=args)
191
192
193
194

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
195
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
196
197
198
199
200
201
202
203
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
204
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
205

206
207
208
209
210
211
212
    train_collate_fn = utils.collate_fn
    if args.use_copypaste:
        if args.data_augmentation != "lsj":
            raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")

        train_collate_fn = copypaste_collate_fn

213
    data_loader = torch.utils.data.DataLoader(
214
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
215
    )
216
217

    data_loader_test = torch.utils.data.DataLoader(
218
219
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
220
221

    print("Creating model")
222
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
223
224
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
225
    if "rcnn" in args.model:
226
227
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
228
229
    model = torchvision.models.get_model(
        args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
230
    )
231
    model.to(device)
232
233
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
234
235
236
237
238
239

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
260

261
262
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

263
    args.lr_scheduler = args.lr_scheduler.lower()
264
    if args.lr_scheduler == "multisteplr":
265
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
266
    elif args.lr_scheduler == "cosineannealinglr":
267
268
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
269
        raise RuntimeError(
270
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
271
        )
Francisco Massa's avatar
Francisco Massa committed
272

273
    if args.resume:
274
275
276
277
278
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
279
280
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
281

282
    if args.test_only:
283
        torch.backends.cudnn.deterministic = True
284
285
286
287
288
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
289
    for epoch in range(args.start_epoch, args.epochs):
290
291
        if args.distributed:
            train_sampler.set_epoch(epoch)
292
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
293
294
        lr_scheduler.step()
        if args.output_dir:
295
            checkpoint = {
296
297
298
299
300
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
301
            }
302
303
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
304
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
305
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
306
307
308
309
310
311

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
312
    print(f"Training time {total_time_str}")
313
314
315


if __name__ == "__main__":
316
    args = get_args_parser().parse_args()
317
    main(args)