train.py 12.3 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35
from torchvision.transforms import InterpolationMode
from transforms import SimpleCopyPaste
36
37


flauted's avatar
flauted committed
38
def get_dataset(name, image_set, transform, data_path):
39
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
40
41
42
43
44
45
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


46
47
def get_transform(train, args):
    if train:
48
49
50
51
52
        return presets.DetectionPresetTrain(data_augmentation=args.data_augmentation)
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
53
    else:
54
        return presets.DetectionPresetEval()
55
56


57
58
def get_args_parser(add_help=True):
    import argparse
59
60
61

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

62
63
64
65
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
66
67
68
69
70
71
72
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
73
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
74
75
76
77
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
78
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
79
80
81
82
83
84
85
86
87
88
89
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
90
91
92
93
94
95
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
96
97
98
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
113
114
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
115
116
117
118
119
120
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
121
122
123
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
124
125
126
127
128
129
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
130
131
132
133
134
135
136
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

137
138
139
140
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

141
    # distributed training parameters
142
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
143
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
144
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
145
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
146

147
148
149
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

150
151
152
153
154
155
156
    # Use CopyPaste augmentation training parameter
    parser.add_argument(
        "--use-copypaste",
        action="store_true",
        help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.",
    )

157
158
159
    return parser


160
def main(args):
161
162
163
    if args.output_dir:
        utils.mkdir(args.output_dir)

164
165
166
167
168
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

169
170
171
    if args.use_deterministic_algorithms:
        torch.use_deterministic_algorithms(True)

172
173
174
    # Data loading code
    print("Loading data")

175
176
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
177
178
179
180

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
181
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
182
183
184
185
186
187
188
189
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
190
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
191

192
193
194
195
196
197
198
199
200
201
202
203
    train_collate_fn = utils.collate_fn
    if args.use_copypaste:
        if args.data_augmentation != "lsj":
            raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies")

        copypaste = SimpleCopyPaste(resize_interpolation=InterpolationMode.BILINEAR, blending=True)

        def copypaste_collate_fn(batch):
            return copypaste(*utils.collate_fn(batch))

        train_collate_fn = copypaste_collate_fn

204
    data_loader = torch.utils.data.DataLoader(
205
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn
206
    )
207
208

    data_loader_test = torch.utils.data.DataLoader(
209
210
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
211
212

    print("Creating model")
213
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
214
215
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
216
    if "rcnn" in args.model:
217
218
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
219
220
221
    model = torchvision.models.detection.__dict__[args.model](
        weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
    )
222
    model.to(device)
223
224
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
225
226
227
228
229
230

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
251

252
253
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

254
    args.lr_scheduler = args.lr_scheduler.lower()
255
    if args.lr_scheduler == "multisteplr":
256
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
257
    elif args.lr_scheduler == "cosineannealinglr":
258
259
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
260
        raise RuntimeError(
261
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
262
        )
Francisco Massa's avatar
Francisco Massa committed
263

264
    if args.resume:
265
266
267
268
269
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
270
271
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
272

273
    if args.test_only:
274
        torch.backends.cudnn.deterministic = True
275
276
277
278
279
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
280
    for epoch in range(args.start_epoch, args.epochs):
281
282
        if args.distributed:
            train_sampler.set_epoch(epoch)
283
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
284
285
        lr_scheduler.step()
        if args.output_dir:
286
            checkpoint = {
287
288
289
290
291
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
292
            }
293
294
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
295
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
296
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
297
298
299
300
301
302

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
303
    print(f"Training time {total_time_str}")
304
305
306


if __name__ == "__main__":
307
    args = get_args_parser().parse_args()
308
    main(args)