train.py 10.2 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35


36
37
38
39
40
41
try:
    from torchvision.prototype import models as PM
except ImportError:
    PM = None


flauted's avatar
flauted committed
42
def get_dataset(name, image_set, transform, data_path):
43
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
44
45
46
47
48
49
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


50
51
52
53
54
55
56
57
58
def get_transform(train, args):
    if train:
        return presets.DetectionPresetTrain(args.data_augmentation)
    elif not args.weights:
        return presets.DetectionPresetEval()
    else:
        fn = PM.detection.__dict__[args.model]
        weights = PM._api.get_weight(fn, args.weights)
        return weights.transforms()
59
60


61
62
def get_args_parser(add_help=True):
    import argparse
63
64
65

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

66
67
68
69
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
70
71
72
73
74
75
76
77
78
79
80
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
81
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
82
83
84
85
86
87
88
89
90
91
92
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
93
94
95
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
110
111
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
112
113
114
115
116
117
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
118
119
120
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
121
122
123
124
125
126
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # distributed training parameters
141
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
142
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
143

144
145
146
    # Prototype models only
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")

147
148
149
    return parser


150
def main(args):
151
152
    if args.weights and PM is None:
        raise ImportError("The prototype module couldn't be found. Please install the latest torchvision nightly.")
153
154
155
    if args.output_dir:
        utils.mkdir(args.output_dir)

156
157
158
159
160
161
162
163
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

164
165
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
166
167
168
169
170
171
172
173
174
175
176
177
178

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
179
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
180
181

    data_loader = torch.utils.data.DataLoader(
182
183
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
184
185

    data_loader_test = torch.utils.data.DataLoader(
186
187
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
188
189

    print("Creating model")
190
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
191
    if "rcnn" in args.model:
192
193
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
194
195
196
197
198
199
    if not args.weights:
        model = torchvision.models.detection.__dict__[args.model](
            pretrained=args.pretrained, num_classes=num_classes, **kwargs
        )
    else:
        model = PM.detection.__dict__[args.model](weights=args.weights, num_classes=num_classes, **kwargs)
200
    model.to(device)
201
202
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
203
204
205
206
207
208
209

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
210
    optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
211

212
    args.lr_scheduler = args.lr_scheduler.lower()
213
    if args.lr_scheduler == "multisteplr":
214
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
215
    elif args.lr_scheduler == "cosineannealinglr":
216
217
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
218
        raise RuntimeError(
219
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
220
        )
Francisco Massa's avatar
Francisco Massa committed
221

222
    if args.resume:
223
224
225
226
227
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
Francisco Massa's avatar
Francisco Massa committed
228

229
230
231
232
233
234
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
235
    for epoch in range(args.start_epoch, args.epochs):
236
237
238
239
240
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
241
            checkpoint = {
242
243
244
245
246
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
247
            }
248
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
249
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
250
251
252
253
254
255

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
256
    print(f"Training time {total_time_str}")
257
258
259


if __name__ == "__main__":
260
    args = get_args_parser().parse_args()
261
    main(args)