resnet.py 15 KB
Newer Older
1
2
from typing import Type, Any, Callable, Union, List, Optional

3
import torch
4
import torch.nn as nn
5
6
from torch import Tensor

7
from .._internally_replaced_utils import load_state_dict_from_url
8
from ..utils import _log_api_usage_once
9
10


11
12
13
14
15
16
17
18
19
20
21
22
__all__ = [
    "ResNet",
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
    "wide_resnet50_2",
    "wide_resnet101_2",
]
23
24
25


model_urls = {
26
27
28
29
30
31
32
33
34
    "resnet18": "https://download.pytorch.org/models/resnet18-f37072fd.pth",
    "resnet34": "https://download.pytorch.org/models/resnet34-b627a593.pth",
    "resnet50": "https://download.pytorch.org/models/resnet50-0676ba61.pth",
    "resnet101": "https://download.pytorch.org/models/resnet101-63fe2227.pth",
    "resnet152": "https://download.pytorch.org/models/resnet152-394f9c45.pth",
    "resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
    "resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
    "wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
    "wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
35
36
37
}


38
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
39
    """3x3 convolution with padding"""
40
41
42
43
44
45
46
47
48
49
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
50
51


52
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
53
54
55
56
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
57
class BasicBlock(nn.Module):
58
59
60
61
62
63
64
65
66
67
68
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
69
        norm_layer: Optional[Callable[..., nn.Module]] = None,
70
    ) -> None:
71
        super().__init__()
72
73
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
74
        if groups != 1 or base_width != 64:
75
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
76
77
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
78
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
79
        self.conv1 = conv3x3(inplanes, planes, stride)
80
        self.bn1 = norm_layer(planes)
81
82
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
83
        self.bn2 = norm_layer(planes)
84
85
86
        self.downsample = downsample
        self.stride = stride

87
    def forward(self, x: Tensor) -> Tensor:
88
        identity = x
89
90
91
92
93
94
95
96
97

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
98
            identity = self.downsample(x)
99

100
        out += identity
101
102
103
104
105
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
106
class Bottleneck(nn.Module):
107
108
109
110
111
112
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

113
114
115
116
117
118
119
120
121
122
123
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
124
        norm_layer: Optional[Callable[..., nn.Module]] = None,
125
    ) -> None:
126
        super().__init__()
127
128
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
129
        width = int(planes * (base_width / 64.0)) * groups
130
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
131
132
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
133
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
134
135
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
136
        self.bn3 = norm_layer(planes * self.expansion)
137
138
139
140
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

141
    def forward(self, x: Tensor) -> Tensor:
142
        identity = x
143
144
145
146
147
148
149
150
151
152
153
154
155

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
156
            identity = self.downsample(x)
157

158
        out += identity
159
160
161
162
163
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
164
class ResNet(nn.Module):
165
166
167
168
169
170
171
172
173
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
174
        norm_layer: Optional[Callable[..., nn.Module]] = None,
175
    ) -> None:
176
        super().__init__()
177
        _log_api_usage_once(self)
178
179
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
180
        self._norm_layer = norm_layer
181
182

        self.inplanes = 64
183
184
185
186
187
188
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
189
190
            raise ValueError(
                "replace_stride_with_dilation should be None "
191
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
192
            )
193
194
        self.groups = groups
        self.base_width = width_per_group
195
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
196
        self.bn1 = norm_layer(self.inplanes)
197
198
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
199
        self.layer1 = self._make_layer(block, 64, layers[0])
200
201
202
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
203
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
204
        self.fc = nn.Linear(512 * block.expansion, num_classes)
205
206
207

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
208
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
209
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
210
211
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
212

213
214
215
216
217
218
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
219
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
220
                elif isinstance(m, BasicBlock):
221
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
222

223
224
225
226
227
228
229
230
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
231
        norm_layer = self._norm_layer
232
        downsample = None
233
234
235
236
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
237
238
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
239
                conv1x1(self.inplanes, planes * block.expansion, stride),
240
                norm_layer(planes * block.expansion),
241
242
243
            )

        layers = []
244
245
246
247
248
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
249
        self.inplanes = planes * block.expansion
250
        for _ in range(1, blocks):
251
252
253
254
255
256
257
258
259
260
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
261
262
263

        return nn.Sequential(*layers)

264
    def _forward_impl(self, x: Tensor) -> Tensor:
265
        # See note [TorchScript super()]
266
267
268
269
270
271
272
273
274
275
276
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
277
        x = torch.flatten(x, 1)
278
279
280
281
        x = self.fc(x)

        return x

282
    def forward(self, x: Tensor) -> Tensor:
283
        return self._forward_impl(x)
284

285

286
287
288
289
290
291
def _resnet(
    arch: str,
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
    pretrained: bool,
    progress: bool,
292
    **kwargs: Any,
293
) -> ResNet:
294
    model = ResNet(block, layers, **kwargs)
295
    if pretrained:
296
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
297
298
299
300
        model.load_state_dict(state_dict)
    return model


301
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
302
    r"""ResNet-18 model from
303
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
304
305
306

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
307
        progress (bool): If True, displays a progress bar of the download to stderr
308
    """
309
    return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
310
311


312
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
313
    r"""ResNet-34 model from
314
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
315
316
317

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
318
        progress (bool): If True, displays a progress bar of the download to stderr
319
    """
320
    return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
321
322


323
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
324
    r"""ResNet-50 model from
325
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
326
327
328

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
329
        progress (bool): If True, displays a progress bar of the download to stderr
330
    """
331
    return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
332
333


334
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
335
    r"""ResNet-101 model from
336
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
337
338
339

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
340
        progress (bool): If True, displays a progress bar of the download to stderr
341
    """
342
    return _resnet("resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
343
344


345
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
346
    r"""ResNet-152 model from
347
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
348
349
350

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
351
        progress (bool): If True, displays a progress bar of the download to stderr
352
    """
353
    return _resnet("resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
354
355


356
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
357
    r"""ResNeXt-50 32x4d model from
358
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
359
360
361
362
363

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
364
365
366
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 4
    return _resnet("resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
367
368


369
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
370
    r"""ResNeXt-101 32x8d model from
371
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
372
373
374
375
376

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
377
378
379
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 8
    return _resnet("resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
380
381


382
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
383
    r"""Wide ResNet-50-2 model from
384
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
385
386
387
388
389
390
391
392
393
394

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
395
396
    kwargs["width_per_group"] = 64 * 2
    return _resnet("wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
397
398


399
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
400
    r"""Wide ResNet-101-2 model from
401
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
402
403
404
405
406
407
408
409
410
411

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
412
413
    kwargs["width_per_group"] = 64 * 2
    return _resnet("wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)