test_functional_tensor.py 48.8 KB
Newer Older
1
import itertools
2
import os
3
import unittest
4
import colorsys
5
import math
6

vfdev's avatar
vfdev committed
7
import numpy as np
8
import pytest
vfdev's avatar
vfdev committed
9
10
11
12
13

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
14
import torchvision.transforms as T
15
from torchvision.transforms import InterpolationMode
16

17
from common_utils import TransformsTester, cpu_and_gpu, needs_cuda
18
from _assert_utils import assert_equal
19

20
from typing import Dict, List, Sequence, Tuple
21

22

23
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
24
25


26
27
28
29
30
31
32
@pytest.fixture(scope='module')
def tester():
    # instanciation of the Tester class used for equality assertions and other utilities
    # TODO: remove this eventually when we don't need the class anymore
    return Tester()


33
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
34

35
36
37
    def setUp(self):
        self.device = "cpu"

38
    def _test_fn_on_batch(self, batch_tensors, fn, scripted_fn_atol=1e-8, **fn_kwargs):
39
40
41
42
        transformed_batch = fn(batch_tensors, **fn_kwargs)
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            transformed_img = fn(img_tensor, **fn_kwargs)
43
            assert_equal(transformed_img, transformed_batch[i, ...])
44

45
46
47
48
        if scripted_fn_atol >= 0:
            scripted_fn = torch.jit.script(fn)
            # scriptable function test
            s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
49
            torch.testing.assert_close(transformed_batch, s_transformed_batch, rtol=1e-5, atol=scripted_fn_atol)
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    def test_assert_image_tensor(self):
        shape = (100,)
        tensor = torch.rand(*shape, dtype=torch.float, device=self.device)

        list_of_methods = [(F_t._get_image_size, (tensor, )), (F_t.vflip, (tensor, )),
                           (F_t.hflip, (tensor, )), (F_t.crop, (tensor, 1, 2, 4, 5)),
                           (F_t.adjust_brightness, (tensor, 0.)), (F_t.adjust_contrast, (tensor, 1.)),
                           (F_t.adjust_hue, (tensor, -0.5)), (F_t.adjust_saturation, (tensor, 2.)),
                           (F_t.center_crop, (tensor, [10, 11])), (F_t.five_crop, (tensor, [10, 11])),
                           (F_t.ten_crop, (tensor, [10, 11])), (F_t.pad, (tensor, [2, ], 2, "constant")),
                           (F_t.resize, (tensor, [10, 11])), (F_t.perspective, (tensor, [0.2, ])),
                           (F_t.gaussian_blur, (tensor, (2, 2), (0.7, 0.5))),
                           (F_t.invert, (tensor, )), (F_t.posterize, (tensor, 0)),
                           (F_t.solarize, (tensor, 0.3)), (F_t.adjust_sharpness, (tensor, 0.3)),
                           (F_t.autocontrast, (tensor, )), (F_t.equalize, (tensor, ))]

        for func, args in list_of_methods:
            with self.assertRaises(Exception) as context:
                func(*args)

            self.assertTrue('Tensor is not a torch image.' in str(context.exception))

73
    def test_vflip(self):
74
75
76
77
78
79
80
        script_vflip = torch.jit.script(F.vflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
        self.compareTensorToPIL(vflipped_img, vflipped_pil_img)

81
82
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
83
        assert_equal(vflipped_img, vflipped_img_script)
84
85
86

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.vflip)
87

88
    def test_hflip(self):
89
90
91
92
93
94
95
        script_hflip = torch.jit.script(F.hflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
        self.compareTensorToPIL(hflipped_img, hflipped_pil_img)

96
97
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
98
        assert_equal(hflipped_img, hflipped_img_script)
99
100
101

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.hflip)
102

103
    def test_crop(self):
104
        script_crop = torch.jit.script(F.crop)
105

106
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
123

124
125
126
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)

127
    def test_hsv2rgb(self):
128
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
129
        shape = (3, 100, 150)
130
131
132
133
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
134

135
136
137
138
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
139
140
141
142

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
143
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
144
            torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)
145

146
            s_rgb_img = scripted_fn(hsv_img)
147
            torch.testing.assert_close(rgb_img, s_rgb_img)
148

149
150
151
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._hsv2rgb)

152
    def test_rgb2hsv(self):
153
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
154
        shape = (3, 150, 100)
155
156
157
158
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
159

160
            r, g, b, = rgb_img.unbind(dim=-3)
161
162
163
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
164
165
166
167
168

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

169
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
170

171
172
173
174
175
176
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
177
178
            self.assertLess(max_diff, 1e-5)

179
            s_hsv_img = scripted_fn(rgb_img)
180
            torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)
181

182
183
184
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._rgb2hsv)

185
    def test_rgb_to_grayscale(self):
186
187
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

188
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
189
190
191
192
193
194
195
196

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
197
            assert_equal(s_gray_tensor, gray_tensor)
198

199
200
201
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)

202
    def test_center_crop(self):
203
204
        script_center_crop = torch.jit.script(F.center_crop)

205
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
206
207
208
209
210
211
212
213

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
214

215
216
217
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])

218
    def test_five_crop(self):
219
220
        script_five_crop = torch.jit.script(F.five_crop)

221
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
222
223
224
225
226
227
228
229
230
231

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
232

233
234
235
236
237
238
239
240
241
242
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
243
                assert_equal(true_transformed_img, transformed_img)
244
245
246
247

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
248
            assert_equal(transformed_batch, s_transformed_batch)
249

250
    def test_ten_crop(self):
251
252
        script_ten_crop = torch.jit.script(F.ten_crop)

253
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
254
255
256
257
258
259
260
261
262
263

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
264

265
266
267
268
269
270
271
272
273
274
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
275
                assert_equal(true_transformed_img, transformed_img)
276
277
278
279

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
280
            assert_equal(transformed_batch, s_transformed_batch)
281

282
    def test_pad(self):
283
        script_fn = torch.jit.script(F.pad)
284
        tensor, pil_img = self._create_data(7, 8, device=self.device)
285
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
286

287
288
289
290
291
292
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

293
294
295
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
296
297
                batch_tensors = batch_tensors.to(dt)

298
299
300
301
302
303
304
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
305
                    {"padding_mode": "symmetric"},
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
323
                    assert_equal(pad_tensor, pad_tensor_script, msg="{}, {}".format(pad, kwargs))
324

325
326
                    self._test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)

327
    def test_resize(self):
328
        script_fn = torch.jit.script(F.resize)
329
        tensor, pil_img = self._create_data(26, 36, device=self.device)
330
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
331

332
333
334
335
336
337
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
338
339
340
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
341
342
                batch_tensors = batch_tensors.to(dt)

343
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
344
345
346
347
348
349
350
                for max_size in (None, 33, 40, 1000):
                    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
                        continue  # unsupported, see assertRaises below
                    for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                        resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
                        resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

351
352
353
354
                        assert_equal(
                            resized_tensor.size()[1:],
                            resized_pil_img.size[::-1],
                            msg="{}, {}".format(size, interpolation),
vfdev's avatar
vfdev committed
355
356
                        )

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
                        if interpolation not in [NEAREST, ]:
                            # We can not check values if mode = NEAREST, as results are different
                            # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                            # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                            resized_tensor_f = resized_tensor
                            # we need to cast to uint8 to compare with PIL image
                            if resized_tensor_f.dtype == torch.uint8:
                                resized_tensor_f = resized_tensor_f.to(torch.float)

                            # Pay attention to high tolerance for MAE
                            self.approxEqualTensorToPIL(
                                resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                            )

                        if isinstance(size, int):
                            script_size = [size, ]
                        else:
                            script_size = size

                        resize_result = script_fn(tensor, size=script_size, interpolation=interpolation,
                                                  max_size=max_size)
378
                        assert_equal(resized_tensor, resize_result, msg="{}, {}".format(size, interpolation))
379
380
381
382

                        self._test_fn_on_batch(
                            batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size
                        )
383

384
        # assert changed type warning
385
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
386
387
            res1 = F.resize(tensor, size=32, interpolation=2)
            res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
388
            assert_equal(res1, res2)
389

390
391
392
393
394
395
396
        for img in (tensor, pil_img):
            exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
            with self.assertRaisesRegex(ValueError, exp_msg):
                F.resize(img, size=(32, 34), max_size=35)
            with self.assertRaisesRegex(ValueError, "max_size = 32 must be strictly greater"):
                F.resize(img, size=32, max_size=32)

397
    def test_resized_crop(self):
398
399
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
400
        tensor, _ = self._create_data(26, 36, device=self.device)
401
402
403

        for mode in [NEAREST, BILINEAR, BICUBIC]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
404
            assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
405
406

        # 2) resize by half and crop a TL corner
407
        tensor, _ = self._create_data(26, 36, device=self.device)
408
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
409
        expected_out_tensor = tensor[:, :20:2, :30:2]
410
411
412
413
414
        assert_equal(
            expected_out_tensor,
            out_tensor,
            check_stride=False,
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10]),
415
416
        )

417
418
        batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
        self._test_fn_on_batch(
419
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
420
421
        )

422
423
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
424
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
vfdev's avatar
vfdev committed
425

426
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
427
428
429
        out_tensor = scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
430
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
431

432
433
434
435
436
437
438
439
440
441
442
443
444
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
445
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
446
            )
447
448
449
450
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
451
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
452
453
                )
                if true_tensor is not None:
454
455
456
457
458
                    assert_equal(
                        true_tensor,
                        out_tensor,
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5]),
                        check_stride=False,
459
                    )
460

461
462
463
464
465
466
467
468
469
470
471
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
472
                    )
473
                )
474

475
476
477
478
479
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
480

481
            out_pil_img = F.affine(
482
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
483
484
485
486
487
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
488
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
489
490
491
492
493
494
495
496
497
498
499
500
501
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
502
                    )
503
                )
504

505
506
507
508
509
510
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
511

512
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
513

514
            for fn in [F.affine, scripted_affine]:
515
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
516

517
518
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
519

520
521
522
523
524
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
525
526
527
528
529
530
531
532
533
534
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
            (0, [0, 0], 1.0, [35.0, ], (2.0, )),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
535
        ]
536
        for r in [NEAREST, ]:
537
538
539
            for a, t, s, sh, f in test_configs:
                f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f_pil)
540
541
542
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
543
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f).cpu()
544
545
546
547
548
549
550
551
552
553
554
555

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
556
                            (r, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
557
                        )
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
582
583
584
585
586
587
588
589
590
591
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

592
593
594
595
596
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
597
            assert_equal(res1, res2)
598
599

        # assert changed type warning
600
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
601
602
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
603
            assert_equal(res1, res2)
604
605
606
607

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
608
609
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))
610

611
612
613
    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
614
        for r in [NEAREST, ]:
615
616
617
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
                        for f in [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )]:
                            f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                            out_pil_img = F.rotate(pil_img, angle=a, interpolation=r, expand=e, center=c, fill=f_pil)
                            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                            for fn in [F.rotate, scripted_rotate]:
                                out_tensor = fn(tensor, angle=a, interpolation=r, expand=e, center=c, fill=f).cpu()

                                if out_tensor.dtype != torch.uint8:
                                    out_tensor = out_tensor.to(torch.uint8)

                                self.assertEqual(
                                    out_tensor.shape,
                                    out_pil_tensor.shape,
                                    msg="{}: {} vs {}".format(
                                        (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                    ))

                                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                # Tolerance : less than 3% of different pixels
                                self.assertLess(
639
                                    ratio_diff_pixels,
640
641
642
643
644
645
646
                                    0.03,
                                    msg="{}: {}\n{} vs \n{}".format(
                                        (img_size, r, dt, a, e, c, f),
                                        ratio_diff_pixels,
                                        out_tensor[0, :7, :7],
                                        out_pil_tensor[0, :7, :7]
                                    )
647
                                )
vfdev's avatar
vfdev committed
648

649
    def test_rotate(self):
vfdev's avatar
vfdev committed
650
651
652
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

653
654
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
655
656
657
658
659
660
661
662

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

663
664
665
666
667
668
669
670
671
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

672
673
674
675
676
677
678
679
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
                self._test_fn_on_batch(
680
                    batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
681
                )
682
683
684
685
686
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
687
            assert_equal(res1, res2)
688
689

        # assert changed type warning
690
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
691
692
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
693
            assert_equal(res1, res2)
694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    def test_gaussian_blur(self):
        small_image_tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(self.device)

        large_image_tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(self.device)

        scripted_transform = torch.jit.script(F.gaussian_blur)

        # true_cv2_results = {
        #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
        #     "3_3_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
        #     "3_3_0.5": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
        #     "3_5_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
        #     "3_5_0.5": ...
        #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
        #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
        #     "23_23_1.7": ...
        # }
        p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
        true_cv2_results = torch.load(p)

        for tensor in [small_image_tensor, large_image_tensor]:

            for dt in [None, torch.float32, torch.float64, torch.float16]:
                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for ksize in [(3, 3), [3, 5], (23, 23)]:
                    for sigma in [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)]:

                        _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
                        _sigma = sigma[0] if sigma is not None else None
                        shape = tensor.shape
                        gt_key = "{}_{}_{}__{}_{}_{}".format(
                            shape[-2], shape[-1], shape[-3],
                            _ksize[0], _ksize[1], _sigma
                        )
                        if gt_key not in true_cv2_results:
                            continue

                        true_out = torch.tensor(
                            true_cv2_results[gt_key]
                        ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

                        for fn in [F.gaussian_blur, scripted_transform]:
                            out = fn(tensor, kernel_size=ksize, sigma=sigma)
752
753
                            torch.testing.assert_close(
                                out, true_out, rtol=0.0, atol=1.0, check_stride=False,
754
755
756
                                msg="{}, {}".format(ksize, sigma)
                            )

757

758
759
760
761
762
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
763

764
765
766
767
768
769
770
771
772
773
    def test_scale_channel(self):
        """Make sure that _scale_channel gives the same results on CPU and GPU as
        histc or bincount are used depending on the device.
        """
        # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
        # only use bincount and remove that test.
        size = (1_000,)
        img_chan = torch.randint(0, 256, size=size).to('cpu')
        scaled_cpu = F_t._scale_channel(img_chan)
        scaled_cuda = F_t._scale_channel(img_chan.to('cuda'))
774
        assert_equal(scaled_cpu, scaled_cuda.to('cpu'))
775

776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
        points += [
            (dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n))
            for i in range(n)
        ]
    return dims_and_points


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('fill', (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )))
@pytest.mark.parametrize('fn', [F.perspective, torch.jit.script(F.perspective)])
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn, tester):

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

    tensor, pil_img = tester._create_data(*data_dims, device=device)
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation,
                                fill=fill_pil)
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
def test_perspective_batch(device, dims_and_points, dt, tester):

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

    batch_tensors = tester._create_data_batch(*data_dims, num_samples=4, device=device)
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
    tester._test_fn_on_batch(
        batch_tensors, F.perspective, scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints, endpoints=epoints, interpolation=NEAREST
    )


def test_perspective_interpolation_warning(tester):
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
    with tester.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
        tester.assertTrue(res1.equal(res2))


871
@pytest.mark.parametrize('device', cpu_and_gpu())
872
873
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[96, 72], [96, 420], [420, 72]])
874
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
875
876
def test_resize_antialias(device, dt, size, interpolation, tester):

877
878
    torch.manual_seed(12)

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    script_fn = torch.jit.script(F.resize)
    tensor, pil_img = tester._create_data(320, 290, device=device)

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

    tester.assertEqual(
        resized_tensor.size()[1:], resized_pil_img.size[::-1],
        msg=f"{size}, {interpolation}, {dt}"
    )

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

    tester.approxEqualTensorToPIL(
        resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}"
    )
906
907
908
909
910
911
912
913
914

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

915
    tester.approxEqualTensorToPIL(
916
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max",
917
918
919
920
921
922
923
924
925
926
927
928
        msg=f"{size}, {interpolation}, {dt}"
    )

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
    tester.assertTrue(resized_tensor.equal(resize_result), msg=f"{size}, {interpolation}, {dt}")


929
930
931
932
933
934
935
936
937
938
939
940
941
@needs_cuda
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
def test_assert_resize_antialias(interpolation, tester):

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
    tensor, pil_img = tester._create_data(1000, 1000, device="cuda")

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def check_functional_vs_PIL_vs_scripted(fn, fn_pil, fn_t, config, device, dtype, tol=2.0 + 1e-10, agg_method="max"):

    tester = Tester()

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
    tensor, pil_img = tester._create_data(26, 34, device=device)
    batch_tensors = tester._create_data_batch(16, 18, num_samples=4, device=device)

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
    tester.approxEqualTensorToPIL(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
    tester._test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
def test_adjust_brightness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_invert(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.invert,
        F_pil.invert,
        F_t.invert,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"bits": bits} for bits in range(0, 8)])
def test_posterize(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
def test_solarize1(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
def test_solarize2(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_sharpness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_autocontrast(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.autocontrast,
        F_pil.autocontrast,
        F_t.autocontrast,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_equalize(device):
    torch.set_deterministic(False)
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_contrast(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_contrast,
        F_pil.adjust_contrast,
        F_t.adjust_contrast,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
def test_adjust_saturation(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_saturation,
        F_pil.adjust_saturation,
        F_t.adjust_saturation,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
def test_adjust_hue(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_hue,
        F_pil.adjust_hue,
        F_t.adjust_hue,
        config,
        device,
        dtype,
        tol=16.1,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
def test_adjust_gamma(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
    )


1156
1157
if __name__ == '__main__':
    unittest.main()