functional_tensor.py 32.7 KB
Newer Older
vfdev's avatar
vfdev committed
1
import warnings
2
from typing import List, Optional, Tuple, Union
vfdev's avatar
vfdev committed
3

4
import torch
5
from torch import Tensor
6
from torch.nn.functional import conv2d, grid_sample, interpolate, pad as torch_pad
7
8


vfdev's avatar
vfdev committed
9
10
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
11
12


13
def _assert_image_tensor(img: Tensor) -> None:
14
15
16
17
    if not _is_tensor_a_torch_image(img):
        raise TypeError("Tensor is not a torch image.")


puhuk's avatar
puhuk committed
18
19
20
21
22
23
def _assert_threshold(img: Tensor, threshold: float) -> None:
    bound = 1 if img.is_floating_point() else 255
    if threshold > bound:
        raise TypeError("Threshold should be less than bound of img.")


24
25
26
27
28
29
30
def get_dimensions(img: Tensor) -> List[int]:
    _assert_image_tensor(img)
    channels = 1 if img.ndim == 2 else img.shape[-3]
    height, width = img.shape[-2:]
    return [channels, height, width]


31
def get_image_size(img: Tensor) -> List[int]:
32
    # Returns (w, h) of tensor image
33
34
    _assert_image_tensor(img)
    return [img.shape[-1], img.shape[-2]]
vfdev's avatar
vfdev committed
35
36


37
def get_image_num_channels(img: Tensor) -> int:
38
    _assert_image_tensor(img)
39
40
41
42
43
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

44
    raise TypeError(f"Input ndim should be 2 or more. Got {img.ndim}")
45
46


47
48
def _max_value(dtype: torch.dtype) -> int:
    if dtype == torch.uint8:
49
        return 255
50
    elif dtype == torch.int8:
51
        return 127
52
    elif dtype == torch.int16:
53
        return 32767
54
    elif dtype == torch.int32:
55
        return 2147483647
56
    elif dtype == torch.int64:
57
        return 9223372036854775807
58
59
    else:
        return 1
60
61


62
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
63
    c = get_dimensions(img)[0]
64
    if c not in permitted:
65
        raise TypeError(f"Input image tensor permitted channel values are {permitted}, but found {c}")
66
67


68
69
70
71
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    if image.dtype == dtype:
        return image

72
    if image.is_floating_point():
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
        eps = 1e-3
91
        max_val = float(_max_value(dtype))
92
93
94
        result = image.mul(max_val + 1.0 - eps)
        return result.to(dtype)
    else:
95
        input_max = float(_max_value(image.dtype))
96
97
98
99
100
101
102

        # int to float
        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            image = image.to(dtype)
            return image / input_max

103
        output_max = float(_max_value(dtype))
104

105
106
107
108
109
        # int to int
        if input_max > output_max:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image // factor can produce different results
            factor = int((input_max + 1) // (output_max + 1))
110
            image = torch.div(image, factor, rounding_mode="floor")
111
112
113
114
115
116
117
118
119
            return image.to(dtype)
        else:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image * factor can produce different results
            factor = int((output_max + 1) // (input_max + 1))
            image = image.to(dtype)
            return image * factor


vfdev's avatar
vfdev committed
120
def vflip(img: Tensor) -> Tensor:
121
    _assert_image_tensor(img)
122

123
    return img.flip(-2)
124
125


vfdev's avatar
vfdev committed
126
def hflip(img: Tensor) -> Tensor:
127
    _assert_image_tensor(img)
128

129
    return img.flip(-1)
ekka's avatar
ekka committed
130
131


vfdev's avatar
vfdev committed
132
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
133
    _assert_image_tensor(img)
ekka's avatar
ekka committed
134

135
    _, h, w = get_dimensions(img)
136
137
138
139
140
    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        padding_ltrb = [max(-left, 0), max(-top, 0), max(right - w, 0), max(bottom - h, 0)]
141
        return pad(img[..., max(top, 0) : bottom, max(left, 0) : right], padding_ltrb, fill=0)
142
    return img[..., top:bottom, left:right]
143
144


145
146
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    if img.ndim < 3:
147
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
148
    _assert_channels(img, [3])
149
150

    if num_output_channels not in (1, 3):
151
        raise ValueError("num_output_channels should be either 1 or 3")
152
153
154
155
156
157
158
159
160

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
161

162
    return l_img
163
164


vfdev's avatar
vfdev committed
165
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
166
    if brightness_factor < 0:
167
        raise ValueError(f"brightness_factor ({brightness_factor}) is not non-negative.")
168

169
    _assert_image_tensor(img)
170

171
172
    _assert_channels(img, [1, 3])

173
    return _blend(img, torch.zeros_like(img), brightness_factor)
174
175


vfdev's avatar
vfdev committed
176
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
177
    if contrast_factor < 0:
178
        raise ValueError(f"contrast_factor ({contrast_factor}) is not non-negative.")
179

180
    _assert_image_tensor(img)
181

182
    _assert_channels(img, [3, 1])
183
    c = get_dimensions(img)[0]
184
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
185
186
187
188
    if c == 3:
        mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
    else:
        mean = torch.mean(img.to(dtype), dim=(-3, -2, -1), keepdim=True)
189
190
191
192

    return _blend(img, mean, contrast_factor)


193
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
194
    if not (-0.5 <= hue_factor <= 0.5):
195
        raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].")
196

197
    if not (isinstance(img, torch.Tensor)):
198
        raise TypeError("Input img should be Tensor image")
199

200
201
    _assert_image_tensor(img)

202
    _assert_channels(img, [1, 3])
203
    if get_dimensions(img)[0] == 1:  # Match PIL behaviour
204
        return img
205

206
207
208
209
210
    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
211
    h, s, v = img.unbind(dim=-3)
212
    h = (h + hue_factor) % 1.0
213
    img = torch.stack((h, s, v), dim=-3)
214
215
216
217
218
219
220
221
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
222
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
223
    if saturation_factor < 0:
224
        raise ValueError(f"saturation_factor ({saturation_factor}) is not non-negative.")
225

226
    _assert_image_tensor(img)
227

228
229
    _assert_channels(img, [1, 3])

230
    if get_dimensions(img)[0] == 1:  # Match PIL behaviour
231
        return img
232

233
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
234
235


236
237
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
    if not isinstance(img, torch.Tensor):
238
        raise TypeError("Input img should be a Tensor.")
239

240
241
    _assert_channels(img, [1, 3])

242
    if gamma < 0:
243
        raise ValueError("Gamma should be a non-negative real number")
244
245
246
247

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
248
        result = convert_image_dtype(result, torch.float32)
249

250
    result = (gain * result**gamma).clamp(0, 1)
251

252
    result = convert_image_dtype(result, dtype)
253
254
255
    return result


vfdev's avatar
vfdev committed
256
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
257
    ratio = float(ratio)
258
259
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
260
261


262
def _rgb2hsv(img: Tensor) -> Tensor:
263
    r, g, b = img.unbind(dim=-3)
264

265
266
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
267
268
    maxc = torch.max(img, dim=-3).values
    minc = torch.min(img, dim=-3).values
269
270
271
272
273
274
275
276
277
278

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
279
280

    cr = maxc - minc
281
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
282
283
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
284
285
286
287
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
288
    cr_divisor = torch.where(eqc, ones, cr)
289
290
291
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
292
293
294
295

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
296
    h = hr + hg + hb
297
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
298
    return torch.stack((h, s, maxc), dim=-3)
299
300


301
def _hsv2rgb(img: Tensor) -> Tensor:
302
    h, s, v = img.unbind(dim=-3)
303
304
305
306
307
308
309
310
311
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

312
    mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
313

314
315
316
317
    a1 = torch.stack((v, q, p, p, t, v), dim=-3)
    a2 = torch.stack((t, v, v, q, p, p), dim=-3)
    a3 = torch.stack((p, p, t, v, v, q), dim=-3)
    a4 = torch.stack((a1, a2, a3), dim=-4)
318

319
    return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
320
321


322
323
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
324
325
326

    # crop if needed
    if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
327
328
        neg_min_padding = [-min(x, 0) for x in padding]
        crop_left, crop_right, crop_top, crop_bottom = neg_min_padding
329
        img = img[..., crop_top : img.shape[-2] - crop_bottom, crop_left : img.shape[-1] - crop_right]
330
331
        padding = [max(x, 0) for x in padding]

332
333
    in_sizes = img.size()

334
    _x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
335
336
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
337
    x_indices = torch.tensor(left_indices + _x_indices + right_indices, device=img.device)
338

339
    _y_indices = [i for i in range(in_sizes[-2])]
340
341
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
342
    y_indices = torch.tensor(top_indices + _y_indices + bottom_indices, device=img.device)
343
344
345
346
347
348
349
350
351
352

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


353
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    if isinstance(padding, int):
        if torch.jit.is_scripting():
            # This maybe unreachable
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    return [pad_left, pad_right, pad_top, pad_bottom]


373
def pad(
374
    img: Tensor, padding: Union[int, List[int]], fill: Optional[Union[int, float]] = 0, padding_mode: str = "constant"
375
) -> Tensor:
376
    _assert_image_tensor(img)
377

378
379
380
    if fill is None:
        fill = 0

381
382
383
384
385
386
387
388
389
390
    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

391
392
393
394
395
396
397
    if isinstance(padding, list):
        # TODO: Jit is failing on loading this op when scripted and saved
        # https://github.com/pytorch/pytorch/issues/81100
        if len(padding) not in [1, 2, 4]:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
398

399
400
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
401

402
    p = _parse_pad_padding(padding)
403

404
405
406
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
407
408
409
    elif padding_mode == "symmetric":
        # route to another implementation
        return _pad_symmetric(img, p)
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

vfdev's avatar
vfdev committed
425
426
427
428
    if padding_mode in ("reflect", "replicate"):
        img = torch_pad(img, p, mode=padding_mode)
    else:
        img = torch_pad(img, p, mode=padding_mode, value=float(fill))
429
430
431
432
433
434
435

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

436
    return img
vfdev's avatar
vfdev committed
437
438


439
440
441
442
def resize(
    img: Tensor,
    size: List[int],
    interpolation: str = "bilinear",
443
    antialias: Optional[bool] = None,
444
) -> Tensor:
445
    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
446
447
448
449

    if isinstance(size, tuple):
        size = list(size)

450
451
452
    if antialias is None:
        antialias = False

453
454
    if antialias and interpolation not in ["bilinear", "bicubic"]:
        raise ValueError("Antialias option is supported for bilinear and bicubic interpolation modes only")
455

vfdev's avatar
vfdev committed
456
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
vfdev's avatar
vfdev committed
457
458

    # Define align_corners to avoid warnings
459
    align_corners = False if interpolation in ["bilinear", "bicubic"] else None
vfdev's avatar
vfdev committed
460

461
    img = interpolate(img, size=size, mode=interpolation, align_corners=align_corners, antialias=antialias)
vfdev's avatar
vfdev committed
462

463
    if interpolation == "bicubic" and out_dtype == torch.uint8:
vfdev's avatar
vfdev committed
464
        img = img.clamp(min=0, max=255)
vfdev's avatar
vfdev committed
465

vfdev's avatar
vfdev committed
466
    img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
vfdev's avatar
vfdev committed
467
468

    return img
vfdev's avatar
vfdev committed
469
470


vfdev's avatar
vfdev committed
471
def _assert_grid_transform_inputs(
472
473
474
475
476
477
478
    img: Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
    fill: Optional[List[float]],
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
479
480
481
482
483

    if not (isinstance(img, torch.Tensor)):
        raise TypeError("Input img should be Tensor")

    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
484

485
    if matrix is not None and not isinstance(matrix, list):
486
        raise TypeError("Argument matrix should be a list")
vfdev's avatar
vfdev committed
487

488
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
489
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
490

491
492
493
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

494
495
496
497
    if fill is not None and not isinstance(fill, (int, float, tuple, list)):
        warnings.warn("Argument fill should be either int, float, tuple or list")

    # Check fill
498
    num_channels = get_dimensions(img)[0]
499
    if isinstance(fill, (tuple, list)) and (len(fill) > 1 and len(fill) != num_channels):
500
501
502
503
        msg = (
            "The number of elements in 'fill' cannot broadcast to match the number of "
            "channels of the image ({} != {})"
        )
504
        raise ValueError(msg.format(len(fill), num_channels))
vfdev's avatar
vfdev committed
505

506
    if interpolation not in supported_interpolation_modes:
507
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")
vfdev's avatar
vfdev committed
508
509


vfdev's avatar
vfdev committed
510
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
vfdev's avatar
vfdev committed
511
    need_squeeze = False
512
    # make image NCHW
vfdev's avatar
vfdev committed
513
514
515
516
517
518
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
vfdev's avatar
vfdev committed
519
    if out_dtype not in req_dtypes:
vfdev's avatar
vfdev committed
520
        need_cast = True
vfdev's avatar
vfdev committed
521
        req_dtype = req_dtypes[0]
522
523
        img = img.to(req_dtype)
    return img, need_cast, need_squeeze, out_dtype
vfdev's avatar
vfdev committed
524
525


526
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype) -> Tensor:
vfdev's avatar
vfdev committed
527
528
529
530
    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
vfdev's avatar
vfdev committed
531
532
533
534
        if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            # it is better to round before cast
            img = torch.round(img)
        img = img.to(out_dtype)
vfdev's avatar
vfdev committed
535
536

    return img
vfdev's avatar
vfdev committed
537
538


539
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str, fill: Optional[List[float]]) -> Tensor:
540

541
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [grid.dtype])
542
543
544
545

    if img.shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
546
547
548
549
550
551

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        dummy = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
        img = torch.cat((img, dummy), dim=1)

552
553
    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

554
555
556
557
558
559
560
    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # N * 1 * H * W
        img = img[:, :-1, :, :]  # N * C * H * W
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = torch.tensor(fill, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
561
        if mode == "nearest":
562
563
564
565
566
            mask = mask < 0.5
            img[mask] = fill_img[mask]
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

567
568
569
570
    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img


571
def _gen_affine_grid(
572
573
574
575
576
    theta: Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
577
578
579
580
581
582
583
584
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
585
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
586
587
588
589
    x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
590
591
    base_grid[..., 2].fill_(1)

592
593
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
594
595
596
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
597
def affine(
598
    img: Tensor, matrix: List[float], interpolation: str = "nearest", fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
599
) -> Tensor:
600
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
vfdev's avatar
vfdev committed
601

602
603
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
604
    shape = img.shape
605
    # grid will be generated on the same device as theta and img
606
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
607
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
vfdev's avatar
vfdev committed
608
609


610
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
611

612
613
614
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
615
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
616
617
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
618
619
620
621
622
623
624
625
    pts = torch.tensor(
        [
            [-0.5 * w, -0.5 * h, 1.0],
            [-0.5 * w, 0.5 * h, 1.0],
            [0.5 * w, 0.5 * h, 1.0],
            [0.5 * w, -0.5 * h, 1.0],
        ]
    )
626
627
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
vfdev's avatar
vfdev committed
628
629
630
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

631
632
633
634
    # shift points to [0, w] and [0, h] interval to match PIL results
    min_vals += torch.tensor((w * 0.5, h * 0.5))
    max_vals += torch.tensor((w * 0.5, h * 0.5))

635
636
637
638
639
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
640
    return int(size[0]), int(size[1])  # w, h
vfdev's avatar
vfdev committed
641
642
643


def rotate(
644
645
646
647
648
    img: Tensor,
    matrix: List[float],
    interpolation: str = "nearest",
    expand: bool = False,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
649
) -> Tensor:
650
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
651
    w, h = img.shape[-1], img.shape[-2]
652
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
653
654
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
655
    # grid will be generated on the same device as theta and img
656
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
657
658

    return _apply_grid_transform(img, grid, interpolation, fill=fill)
659
660


661
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> Tensor:
662
663
664
665
666
667
668
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
669
670
671
672
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)
673
674

    d = 0.5
675
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
676
677
678
679
    x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
680
681
    base_grid[..., 2].fill_(1)

682
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
683
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
684
685
686
687
688
689
690
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
691
    img: Tensor, perspective_coeffs: List[float], interpolation: str = "bilinear", fill: Optional[List[float]] = None
692
) -> Tensor:
693
    if not (isinstance(img, torch.Tensor)):
694
        raise TypeError("Input img should be Tensor.")
695
696

    _assert_image_tensor(img)
697
698
699
700

    _assert_grid_transform_inputs(
        img,
        matrix=None,
701
702
703
        interpolation=interpolation,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
704
        coeffs=perspective_coeffs,
705
706
707
    )

    ow, oh = img.shape[-1], img.shape[-2]
708
709
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
710
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
711
712
713
714
715
716
717
718
719
720
721
722
723


def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
    pdf = torch.exp(-0.5 * (x / sigma).pow(2))
    kernel1d = pdf / pdf.sum()

    return kernel1d


def _get_gaussian_kernel2d(
724
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
725
726
727
728
729
730
731
732
) -> Tensor:
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
    kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
    return kernel2d


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
733
    if not (isinstance(img, torch.Tensor)):
734
        raise TypeError(f"img should be Tensor. Got {type(img)}")
735
736

    _assert_image_tensor(img)
737
738
739
740
741

    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

742
743
744
745
746
747
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
        img,
        [
            kernel.dtype,
        ],
    )
748
749
750
751
752
753
754
755

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
    img = torch_pad(img, padding, mode="reflect")
    img = conv2d(img, kernel, groups=img.shape[-3])

    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img
756
757
758


def invert(img: Tensor) -> Tensor:
759
760

    _assert_image_tensor(img)
761
762

    if img.ndim < 3:
763
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
764
765
766
767
768
769
770
771

    _assert_channels(img, [1, 3])

    bound = torch.tensor(1 if img.is_floating_point() else 255, dtype=img.dtype, device=img.device)
    return bound - img


def posterize(img: Tensor, bits: int) -> Tensor:
772
773

    _assert_image_tensor(img)
774
775

    if img.ndim < 3:
776
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
777
    if img.dtype != torch.uint8:
778
        raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
779
780

    _assert_channels(img, [1, 3])
781
    mask = -int(2 ** (8 - bits))  # JIT-friendly for: ~(2 ** (8 - bits) - 1)
782
783
784
785
    return img & mask


def solarize(img: Tensor, threshold: float) -> Tensor:
786
787

    _assert_image_tensor(img)
788
789

    if img.ndim < 3:
790
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
791
792
793

    _assert_channels(img, [1, 3])

puhuk's avatar
puhuk committed
794
795
    _assert_threshold(img, threshold)

796
797
798
799
800
801
802
803
804
805
806
807
    inverted_img = invert(img)
    return torch.where(img >= threshold, inverted_img, img)


def _blurred_degenerate_image(img: Tensor) -> Tensor:
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    kernel = torch.ones((3, 3), dtype=dtype, device=img.device)
    kernel[1, 1] = 5.0
    kernel /= kernel.sum()
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

808
809
810
811
812
813
    result_tmp, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
        img,
        [
            kernel.dtype,
        ],
    )
814
815
816
817
818
819
820
821
822
823
824
    result_tmp = conv2d(result_tmp, kernel, groups=result_tmp.shape[-3])
    result_tmp = _cast_squeeze_out(result_tmp, need_cast, need_squeeze, out_dtype)

    result = img.clone()
    result[..., 1:-1, 1:-1] = result_tmp

    return result


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
    if sharpness_factor < 0:
825
        raise ValueError(f"sharpness_factor ({sharpness_factor}) is not non-negative.")
826

827
    _assert_image_tensor(img)
828
829
830
831
832
833
834
835
836
837

    _assert_channels(img, [1, 3])

    if img.size(-1) <= 2 or img.size(-2) <= 2:
        return img

    return _blend(img, _blurred_degenerate_image(img), sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
838
839

    _assert_image_tensor(img)
840
841

    if img.ndim < 3:
842
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
843
844
845
846
847
848
849
850
851

    _assert_channels(img, [1, 3])

    bound = 1.0 if img.is_floating_point() else 255.0
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    minimum = img.amin(dim=(-2, -1), keepdim=True).to(dtype)
    maximum = img.amax(dim=(-2, -1), keepdim=True).to(dtype)
    scale = bound / (maximum - minimum)
852
853
854
    eq_idxs = torch.isfinite(scale).logical_not()
    minimum[eq_idxs] = 0
    scale[eq_idxs] = 1
855
856
857
858

    return ((img - minimum) * scale).clamp(0, bound).to(img.dtype)


859
def _scale_channel(img_chan: Tensor) -> Tensor:
860
861
862
863
864
865
866
867
    # TODO: we should expect bincount to always be faster than histc, but this
    # isn't always the case. Once
    # https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if
    # block and only use bincount.
    if img_chan.is_cuda:
        hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)
    else:
        hist = torch.bincount(img_chan.view(-1), minlength=256)
868
869

    nonzero_hist = hist[hist != 0]
870
    step = torch.div(nonzero_hist[:-1].sum(), 255, rounding_mode="floor")
871
872
873
    if step == 0:
        return img_chan

874
    lut = torch.div(torch.cumsum(hist, 0) + torch.div(step, 2, rounding_mode="floor"), step, rounding_mode="floor")
875
876
877
878
879
880
881
882
883
884
    lut = torch.nn.functional.pad(lut, [1, 0])[:-1].clamp(0, 255)

    return lut[img_chan.to(torch.int64)].to(torch.uint8)


def _equalize_single_image(img: Tensor) -> Tensor:
    return torch.stack([_scale_channel(img[c]) for c in range(img.size(0))])


def equalize(img: Tensor) -> Tensor:
885
886

    _assert_image_tensor(img)
887
888

    if not (3 <= img.ndim <= 4):
889
        raise TypeError(f"Input image tensor should have 3 or 4 dimensions, but found {img.ndim}")
890
    if img.dtype != torch.uint8:
891
        raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
892
893
894
895
896
897
898

    _assert_channels(img, [1, 3])

    if img.ndim == 3:
        return _equalize_single_image(img)

    return torch.stack([_equalize_single_image(x) for x in img])
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935


def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
    _assert_image_tensor(tensor)

    if not tensor.is_floating_point():
        raise TypeError(f"Input tensor should be a float tensor. Got {tensor.dtype}.")

    if tensor.ndim < 3:
        raise ValueError(
            f"Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = {tensor.size()}"
        )

    if not inplace:
        tensor = tensor.clone()

    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
    if (std == 0).any():
        raise ValueError(f"std evaluated to zero after conversion to {dtype}, leading to division by zero.")
    if mean.ndim == 1:
        mean = mean.view(-1, 1, 1)
    if std.ndim == 1:
        std = std.view(-1, 1, 1)
    tensor.sub_(mean).div_(std)
    return tensor


def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
    _assert_image_tensor(img)

    if not inplace:
        img = img.clone()

    img[..., i : i + h, j : j + w] = v
    return img
936
937


938
939
940
941
942
943
def _create_identity_grid(size: List[int]) -> Tensor:
    hw_space = [torch.linspace((-s + 1) / s, (s - 1) / s, s) for s in size]
    grid_y, grid_x = torch.meshgrid(hw_space, indexing="ij")
    return torch.stack([grid_x, grid_y], -1).unsqueeze(0)  # 1 x H x W x 2


944
945
946
947
948
949
950
951
952
953
954
955
956
def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: str = "bilinear",
    fill: Optional[List[float]] = None,
) -> Tensor:

    if not (isinstance(img, torch.Tensor)):
        raise TypeError(f"img should be Tensor. Got {type(img)}")

    size = list(img.shape[-2:])
    displacement = displacement.to(img.device)

957
    identity_grid = _create_identity_grid(size)
958
959
    grid = identity_grid.to(img.device) + displacement
    return _apply_grid_transform(img, grid, interpolation, fill)