functional_tensor.py 48.3 KB
Newer Older
vfdev's avatar
vfdev committed
1
2
import warnings

3
import torch
4
from torch import Tensor
5
from torch.nn.functional import grid_sample, conv2d, interpolate, pad as torch_pad
6
7
from torch.jit.annotations import BroadcastingList2
from typing import Optional, Tuple, List
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


14
15
16
17
18
def _assert_image_tensor(img):
    if not _is_tensor_a_torch_image(img):
        raise TypeError("Tensor is not a torch image.")


vfdev's avatar
vfdev committed
19
def _get_image_size(img: Tensor) -> List[int]:
vfdev's avatar
vfdev committed
20
    """Returns (w, h) of tensor image"""
21
22
    _assert_image_tensor(img)
    return [img.shape[-1], img.shape[-2]]
vfdev's avatar
vfdev committed
23
24


25
26
27
28
29
30
def _get_image_num_channels(img: Tensor) -> int:
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

31
    raise TypeError("Input ndim should be 2 or more. Got {}".format(img.ndim))
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _max_value(dtype: torch.dtype) -> float:
    # TODO: replace this method with torch.iinfo when it gets torchscript support.
    # https://github.com/pytorch/pytorch/issues/41492

    a = torch.tensor(2, dtype=dtype)
    signed = 1 if torch.tensor(0, dtype=dtype).is_signed() else 0
    bits = 1
    max_value = torch.tensor(-signed, dtype=torch.long)
    while True:
        next_value = a.pow(bits - signed).sub(1)
        if next_value > max_value:
            max_value = next_value
            bits *= 2
        else:
            return max_value.item()
    return max_value.item()


52
53
54
55
56
57
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
    c = _get_image_num_channels(img)
    if c not in permitted:
        raise TypeError("Input image tensor permitted channel values are {}, but found {}".format(permitted, c))


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """PRIVATE METHOD. Convert a tensor image to the given ``dtype`` and scale the values accordingly

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    # TODO: replace with image.dtype.is_floating_point when torchscript supports it
    if torch.empty(0, dtype=image.dtype).is_floating_point():

        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
        eps = 1e-3
        max_val = _max_value(dtype)
        result = image.mul(max_val + 1.0 - eps)
        return result.to(dtype)
    else:
        input_max = _max_value(image.dtype)

        # int to float
        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            image = image.to(dtype)
            return image / input_max

119
120
        output_max = _max_value(dtype)

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        # int to int
        if input_max > output_max:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image // factor can produce different results
            factor = int((input_max + 1) // (output_max + 1))
            image = image // factor
            return image.to(dtype)
        else:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image * factor can produce different results
            factor = int((output_max + 1) // (input_max + 1))
            image = image.to(dtype)
            return image * factor


vfdev's avatar
vfdev committed
136
def vflip(img: Tensor) -> Tensor:
137
138
139
140
141
142
    """PRIVATE METHOD. Vertically flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
143
144

    Args:
145
        img (Tensor): Image Tensor to be flipped in the form [..., C, H, W].
146
147
148
149

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
150
    _assert_image_tensor(img)
151

152
    return img.flip(-2)
153
154


vfdev's avatar
vfdev committed
155
def hflip(img: Tensor) -> Tensor:
156
157
158
159
160
161
    """PRIVATE METHOD. Horizontally flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
162
163

    Args:
164
        img (Tensor): Image Tensor to be flipped in the form [..., C, H, W].
165
166
167
168

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
169
    _assert_image_tensor(img)
170

171
    return img.flip(-1)
ekka's avatar
ekka committed
172
173


vfdev's avatar
vfdev committed
174
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
175
176
177
178
179
180
    """PRIVATE METHOD. Crop the given Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
181

ekka's avatar
ekka committed
182
    Args:
vfdev's avatar
vfdev committed
183
        img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image.
ekka's avatar
ekka committed
184
185
186
187
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
188

ekka's avatar
ekka committed
189
190
191
    Returns:
        Tensor: Cropped image.
    """
192
    _assert_image_tensor(img)
ekka's avatar
ekka committed
193
194

    return img[..., top:top + height, left:left + width]
195
196


197
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
198
199
200
201
202
203
204
    """PRIVATE METHOD. Convert the given RGB Image Tensor to Grayscale.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

205
206
207
208
209
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].
210
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
211
212

    Returns:
213
214
215
216
        Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
217
218

    """
219
220
    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
221
    _assert_channels(img, [3])
222
223
224
225
226
227
228
229
230
231
232
233

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
234

235
    return l_img
236
237


vfdev's avatar
vfdev committed
238
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
239
    """PRIVATE METHOD. Adjust brightness of a Grayscale or RGB image.
240
241
242
243
244

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
245
246
247
248
249
250
251
252
253
254

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
255
256
257
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

258
    _assert_image_tensor(img)
259

260
261
    _assert_channels(img, [1, 3])

262
    return _blend(img, torch.zeros_like(img), brightness_factor)
263
264


vfdev's avatar
vfdev committed
265
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
266
267
268
269
270
271
    """PRIVATE METHOD. Adjust contrast of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
272
273
274
275
276
277
278
279
280
281

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
282
283
284
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

285
    _assert_image_tensor(img)
286

287
288
    _assert_channels(img, [3])

289
290
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
291
292
293
294

    return _blend(img, mean, contrast_factor)


295
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
296
    """PRIVATE METHOD. Adjust hue of an RGB image.
297
298
299
300
301

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
325
    if not (-0.5 <= hue_factor <= 0.5):
326
327
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

328
    if not (isinstance(img, torch.Tensor)):
329
        raise TypeError('Input img should be Tensor image')
330

331
332
    _assert_image_tensor(img)

333
334
    _assert_channels(img, [3])

335
336
337
338
339
    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
340
    h, s, v = img.unbind(dim=-3)
341
    h = (h + hue_factor) % 1.0
342
    img = torch.stack((h, s, v), dim=-3)
343
344
345
346
347
348
349
350
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
351
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
352
353
354
355
356
357
    """PRIVATE METHOD. Adjust color saturation of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
358
359
360

    Args:
        img (Tensor): Image to be adjusted.
361
362
363
        saturation_factor (float):  How much to adjust the saturation. Can be any
            non negative number. 0 gives a black and white image, 1 gives the
            original image while 2 enhances the saturation by a factor of 2.
364
365
366
367

    Returns:
        Tensor: Saturation adjusted image.
    """
368
369
370
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

371
    _assert_image_tensor(img)
372

373
374
    _assert_channels(img, [3])

375
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
376
377


378
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
379
    r"""PRIVATE METHOD. Adjust gamma of a Grayscale or RGB image.
380
381
382
383
384

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

    .. math::
        `I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}`

    See `Gamma Correction`_ for more details.

    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction

    Args:
        img (Tensor): Tensor of RBG values to be adjusted.
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """

    if not isinstance(img, torch.Tensor):
405
        raise TypeError('Input img should be a Tensor.')
406

407
408
    _assert_channels(img, [1, 3])

409
410
411
412
413
414
    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
415
        result = convert_image_dtype(result, torch.float32)
416
417
418

    result = (gain * result ** gamma).clamp(0, 1)

419
    result = convert_image_dtype(result, dtype)
420
421
422
423
    result = result.to(dtype)
    return result


vfdev's avatar
vfdev committed
424
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
425
426
    """DEPRECATED. Crop the Image Tensor and resize it to desired size.

427
428
429
430
431
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

432
433
434
435
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.center_crop`` instead.
436
437

    Args:
vfdev's avatar
vfdev committed
438
        img (Tensor): Image to be cropped.
439
440
441
442
443
444
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
445
446
447
448
449
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.center_crop`` instead."
    )

450
    _assert_image_tensor(img)
451
452
453

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
454
455
456
457
458
459
460
461
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
462
463
464
465

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
466
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
467
468
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop.

469
470
471
472
473
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

474
475
476
477
478
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.five_crop`` instead.

479
    .. Note::
480

481
        This transform returns a List of Tensors and there may be a
482
483
484
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
485
486
487
488
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
489
490

    Returns:
491
       List: List (tl, tr, bl, br, center)
492
493
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
494
495
496
497
498
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.five_crop`` instead."
    )

499
    _assert_image_tensor(img)
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

515
    return [tl, tr, bl, br, center]
516
517


vfdev's avatar
vfdev committed
518
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
519
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop plus the
520
        flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
521

522
523
524
525
526
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

527
528
529
530
531
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.ten_crop`` instead.

532
    .. Note::
533

534
        This transform returns a List of images and there may be a
535
536
537
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
538
539
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
540
541
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
vfdev's avatar
vfdev committed
542
        vertical_flip (bool): Use vertical flipping instead of horizontal
543
544

    Returns:
545
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
546
547
548
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
549
550
551
552
553
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.ten_crop`` instead."
    )

554
    _assert_image_tensor(img)
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
569
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
570
    ratio = float(ratio)
571
572
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
573
574
575


def _rgb2hsv(img):
576
    r, g, b = img.unbind(dim=-3)
577

578
579
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
580
581
    maxc = torch.max(img, dim=-3).values
    minc = torch.min(img, dim=-3).values
582
583
584
585
586
587
588
589
590
591

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
592
593

    cr = maxc - minc
594
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
595
596
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
597
598
599
600
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
601
    cr_divisor = torch.where(eqc, ones, cr)
602
603
604
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
605
606
607
608
609
610

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
611
    return torch.stack((h, s, maxc), dim=-3)
612
613
614


def _hsv2rgb(img):
615
    h, s, v = img.unbind(dim=-3)
616
617
618
619
620
621
622
623
624
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

625
    mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
626

627
628
629
630
    a1 = torch.stack((v, q, p, p, t, v), dim=-3)
    a2 = torch.stack((t, v, v, q, p, p), dim=-3)
    a3 = torch.stack((p, p, t, v, v, q), dim=-3)
    a4 = torch.stack((a1, a2, a3), dim=-4)
631

632
    return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
633
634


635
636
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
637
638
639
640
641
642
643

    # crop if needed
    if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
        crop_left, crop_right, crop_top, crop_bottom = [-min(x, 0) for x in padding]
        img = img[..., crop_top:img.shape[-2] - crop_bottom, crop_left:img.shape[-1] - crop_right]
        padding = [max(x, 0) for x in padding]

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


665
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
666
667
668
669
670
671
    r"""PRIVATE METHOD. Pad the given Tensor Image on all sides with specified padding mode and fill value.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
672
673
674
675
676
677
678
679
680
681
682

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
683
684
        padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant.
            Mode symmetric is not yet supported for Tensor inputs.
685
686
687

            - constant: pads with a constant value, this value is specified with fill

688
689
690
691
692
693
694
            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

695
696
697
698
699
            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

700
701
702
    Returns:
        Tensor: Padded image.
    """
703
    _assert_image_tensor(img)
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

719
720
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
721
722
723

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
724
            # This maybe unreachable
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

740
741
742
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
743
744
745
    elif padding_mode == "symmetric":
        # route to another implementation
        return _pad_symmetric(img, p)
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

761
    img = torch_pad(img, p, mode=padding_mode, value=float(fill))
762
763
764
765
766
767
768

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

769
    return img
vfdev's avatar
vfdev committed
770
771


772
def resize(img: Tensor, size: List[int], interpolation: str = "bilinear") -> Tensor:
773
774
775
776
777
778
    r"""PRIVATE METHOD. Resize the input Tensor to the given size.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
779
780
781
782
783
784
785
786
787
788

    Args:
        img (Tensor): Image to be resized.
        size (int or tuple or list): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as a single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
789
790
        interpolation (str): Desired interpolation. Default is "bilinear". Other supported values:
            "nearest" and "bicubic".
vfdev's avatar
vfdev committed
791
792
793
794

    Returns:
        Tensor: Resized image.
    """
795
    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
796
797
798

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
799
    if not isinstance(interpolation, str):
vfdev's avatar
vfdev committed
800
801
        raise TypeError("Got inappropriate interpolation arg")

802
    if interpolation not in ["nearest", "bilinear", "bicubic"]:
vfdev's avatar
vfdev committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

    if isinstance(size, list) and len(size) not in [1, 2]:
        raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                         "{} element tuple/list".format(len(size)))

    w, h = _get_image_size(img)

    if isinstance(size, int):
        size_w, size_h = size, size
    elif len(size) < 2:
        size_w, size_h = size[0], size[0]
    else:
819
        size_w, size_h = size[1], size[0]  # Convention (h, w)
vfdev's avatar
vfdev committed
820
821
822
823
824
825
826

    if isinstance(size, int) or len(size) < 2:
        if w < h:
            size_h = int(size_w * h / w)
        else:
            size_w = int(size_h * w / h)

827
828
        if (w <= h and w == size_w) or (h <= w and h == size_h):
            return img
vfdev's avatar
vfdev committed
829

vfdev's avatar
vfdev committed
830
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
vfdev's avatar
vfdev committed
831
832

    # Define align_corners to avoid warnings
833
    align_corners = False if interpolation in ["bilinear", "bicubic"] else None
vfdev's avatar
vfdev committed
834

835
    img = interpolate(img, size=[size_h, size_w], mode=interpolation, align_corners=align_corners)
vfdev's avatar
vfdev committed
836

837
    if interpolation == "bicubic" and out_dtype == torch.uint8:
vfdev's avatar
vfdev committed
838
        img = img.clamp(min=0, max=255)
vfdev's avatar
vfdev committed
839

vfdev's avatar
vfdev committed
840
    img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
vfdev's avatar
vfdev committed
841
842

    return img
vfdev's avatar
vfdev committed
843
844


vfdev's avatar
vfdev committed
845
def _assert_grid_transform_inputs(
846
847
        img: Tensor,
        matrix: Optional[List[float]],
848
        interpolation: str,
849
        fill: Optional[List[float]],
850
        supported_interpolation_modes: List[str],
851
        coeffs: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
852
):
853
854
855
856
857

    if not (isinstance(img, torch.Tensor)):
        raise TypeError("Input img should be Tensor")

    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
858

859
    if matrix is not None and not isinstance(matrix, list):
860
        raise TypeError("Argument matrix should be a list")
vfdev's avatar
vfdev committed
861

862
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
863
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
864

865
866
867
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

868
869
870
871
872
873
874
875
876
    if fill is not None and not isinstance(fill, (int, float, tuple, list)):
        warnings.warn("Argument fill should be either int, float, tuple or list")

    # Check fill
    num_channels = _get_image_num_channels(img)
    if isinstance(fill, (tuple, list)) and (len(fill) > 1 and len(fill) != num_channels):
        msg = ("The number of elements in 'fill' cannot broadcast to match the number of "
               "channels of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_channels))
vfdev's avatar
vfdev committed
877

878
879
    if interpolation not in supported_interpolation_modes:
        raise ValueError("Interpolation mode '{}' is unsupported with Tensor input".format(interpolation))
vfdev's avatar
vfdev committed
880
881


vfdev's avatar
vfdev committed
882
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
vfdev's avatar
vfdev committed
883
    need_squeeze = False
884
    # make image NCHW
vfdev's avatar
vfdev committed
885
886
887
888
889
890
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
vfdev's avatar
vfdev committed
891
    if out_dtype not in req_dtypes:
vfdev's avatar
vfdev committed
892
        need_cast = True
vfdev's avatar
vfdev committed
893
        req_dtype = req_dtypes[0]
894
895
        img = img.to(req_dtype)
    return img, need_cast, need_squeeze, out_dtype
vfdev's avatar
vfdev committed
896
897


898
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype):
vfdev's avatar
vfdev committed
899
900
901
902
    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
vfdev's avatar
vfdev committed
903
904
905
906
        if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            # it is better to round before cast
            img = torch.round(img)
        img = img.to(out_dtype)
vfdev's avatar
vfdev committed
907
908

    return img
vfdev's avatar
vfdev committed
909
910


911
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str, fill: Optional[List[float]]) -> Tensor:
912

vfdev's avatar
vfdev committed
913
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [grid.dtype, ])
914
915
916
917

    if img.shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
918
919
920
921
922
923

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        dummy = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
        img = torch.cat((img, dummy), dim=1)

924
925
    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

926
927
928
929
930
931
932
933
934
935
936
937
938
    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # N * 1 * H * W
        img = img[:, :-1, :, :]  # N * C * H * W
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = torch.tensor(fill, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
        if mode == 'nearest':
            mask = mask < 0.5
            img[mask] = fill_img[mask]
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

939
940
941
942
    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img


943
944
945
946
947
948
949
950
951
952
def _gen_affine_grid(
        theta: Tensor, w: int, h: int, ow: int, oh: int,
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
953
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
954
955
956
957
    x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
958
959
    base_grid[..., 2].fill_(1)

960
961
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
962
963
964
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
965
def affine(
966
        img: Tensor, matrix: List[float], interpolation: str = "nearest", fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
967
) -> Tensor:
968
969
970
971
972
973
    """PRIVATE METHOD. Apply affine transformation on the Tensor image keeping image center invariant.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
974
975
976
977

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation.
978
        interpolation (str): An optional resampling filter. Default is "nearest". Other supported values: "bilinear".
979
980
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
vfdev's avatar
vfdev committed
981
982
983
984

    Returns:
        Tensor: Transformed image.
    """
985
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
vfdev's avatar
vfdev committed
986

987
988
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
989
    shape = img.shape
990
    # grid will be generated on the same device as theta and img
991
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
992
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
vfdev's avatar
vfdev committed
993
994


995
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
996

997
998
999
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
1000
1001
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    pts = torch.tensor([
1002
1003
1004
1005
        [-0.5 * w, -0.5 * h, 1.0],
        [-0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, -0.5 * h, 1.0],
vfdev's avatar
vfdev committed
1006
    ])
1007
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
1008
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
1009
1010
1011
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

1012
1013
1014
1015
1016
1017
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
1018
1019
1020


def rotate(
1021
    img: Tensor, matrix: List[float], interpolation: str = "nearest",
1022
    expand: bool = False, fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1023
) -> Tensor:
1024
1025
1026
1027
1028
1029
    """PRIVATE METHOD. Rotate the Tensor image by angle.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
1030
1031
1032
1033

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for rotation transformation.
1034
            Translation part (``matrix[2]`` and ``matrix[5]``) should be in pixel coordinates.
1035
        interpolation (str): An optional resampling filter. Default is "nearest". Other supported values: "bilinear".
vfdev's avatar
vfdev committed
1036
1037
1038
1039
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1040
1041
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
vfdev's avatar
vfdev committed
1042
1043
1044
1045
1046
1047
1048

    Returns:
        Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1049
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
1050
    w, h = img.shape[-1], img.shape[-2]
1051
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
1052
1053
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
1054
    # grid will be generated on the same device as theta and img
1055
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
1056
1057

    return _apply_grid_transform(img, grid, interpolation, fill=fill)
1058
1059


1060
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device):
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor([[
        [coeffs[0], coeffs[1], coeffs[2]],
        [coeffs[3], coeffs[4], coeffs[5]]
1071
    ]], dtype=dtype, device=device)
1072
1073
1074
    theta2 = torch.tensor([[
        [coeffs[6], coeffs[7], 1.0],
        [coeffs[6], coeffs[7], 1.0]
1075
    ]], dtype=dtype, device=device)
1076
1077

    d = 0.5
1078
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1079
1080
1081
1082
    x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
1083
1084
    base_grid[..., 2].fill_(1)

1085
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
1086
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
1087
1088
1089
1090
1091
1092
1093
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
1094
    img: Tensor, perspective_coeffs: List[float], interpolation: str = "bilinear", fill: Optional[List[float]] = None
1095
) -> Tensor:
1096
1097
1098
1099
1100
1101
    """PRIVATE METHOD. Perform perspective transform of the given Tensor image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
1102
1103
1104
1105

    Args:
        img (Tensor): Image to be transformed.
        perspective_coeffs (list of float): perspective transformation coefficients.
1106
        interpolation (str): Interpolation type. Default, "bilinear".
1107
1108
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
1109
1110
1111
1112

    Returns:
        Tensor: transformed image.
    """
1113
1114
1115
1116
1117

    if not (isinstance(img, torch.Tensor)):
        raise TypeError('Input img should be Tensor.')

    _assert_image_tensor(img)
1118
1119
1120
1121

    _assert_grid_transform_inputs(
        img,
        matrix=None,
1122
1123
1124
        interpolation=interpolation,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
1125
1126
1127
1128
        coeffs=perspective_coeffs
    )

    ow, oh = img.shape[-1], img.shape[-2]
1129
1130
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
1131
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168


def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
    pdf = torch.exp(-0.5 * (x / sigma).pow(2))
    kernel1d = pdf / pdf.sum()

    return kernel1d


def _get_gaussian_kernel2d(
        kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> Tensor:
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
    kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
    return kernel2d


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
    """PRIVATE METHOD. Performs Gaussian blurring on the img by given kernel.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

    Args:
        img (Tensor): Image to be blurred
        kernel_size (sequence of int or int): Kernel size of the Gaussian kernel ``(kx, ky)``.
        sigma (sequence of float or float, optional): Standard deviation of the Gaussian kernel ``(sx, sy)``.

    Returns:
        Tensor: An image that is blurred using gaussian kernel of given parameters
    """
1169
1170
1171
1172
1173

    if not (isinstance(img, torch.Tensor)):
        raise TypeError('img should be Tensor. Got {}'.format(type(img)))

    _assert_image_tensor(img)
1174
1175
1176
1177
1178

    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

vfdev's avatar
vfdev committed
1179
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [kernel.dtype, ])
1180
1181
1182
1183
1184
1185
1186
1187

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
    img = torch_pad(img, padding, mode="reflect")
    img = conv2d(img, kernel, groups=img.shape[-3])

    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img
1188
1189
1190


def invert(img: Tensor) -> Tensor:
1191
1192

    _assert_image_tensor(img)
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    bound = torch.tensor(1 if img.is_floating_point() else 255, dtype=img.dtype, device=img.device)
    return bound - img


def posterize(img: Tensor, bits: int) -> Tensor:
1204
1205

    _assert_image_tensor(img)
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
    if img.dtype != torch.uint8:
        raise TypeError("Only torch.uint8 image tensors are supported, but found {}".format(img.dtype))

    _assert_channels(img, [1, 3])
    mask = -int(2**(8 - bits))  # JIT-friendly for: ~(2 ** (8 - bits) - 1)
    return img & mask


def solarize(img: Tensor, threshold: float) -> Tensor:
1218
1219

    _assert_image_tensor(img)
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    inverted_img = invert(img)
    return torch.where(img >= threshold, inverted_img, img)


def _blurred_degenerate_image(img: Tensor) -> Tensor:
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    kernel = torch.ones((3, 3), dtype=dtype, device=img.device)
    kernel[1, 1] = 5.0
    kernel /= kernel.sum()
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

    result_tmp, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [kernel.dtype, ])
    result_tmp = conv2d(result_tmp, kernel, groups=result_tmp.shape[-3])
    result_tmp = _cast_squeeze_out(result_tmp, need_cast, need_squeeze, out_dtype)

    result = img.clone()
    result[..., 1:-1, 1:-1] = result_tmp

    return result


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
    if sharpness_factor < 0:
        raise ValueError('sharpness_factor ({}) is not non-negative.'.format(sharpness_factor))

1252
    _assert_image_tensor(img)
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

    _assert_channels(img, [1, 3])

    if img.size(-1) <= 2 or img.size(-2) <= 2:
        return img

    return _blend(img, _blurred_degenerate_image(img), sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1263
1264

    _assert_image_tensor(img)
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

    _assert_channels(img, [1, 3])

    bound = 1.0 if img.is_floating_point() else 255.0
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    minimum = img.amin(dim=(-2, -1), keepdim=True).to(dtype)
    maximum = img.amax(dim=(-2, -1), keepdim=True).to(dtype)
    eq_idxs = torch.where(minimum == maximum)[0]
    minimum[eq_idxs] = 0
    maximum[eq_idxs] = bound
    scale = bound / (maximum - minimum)

    return ((img - minimum) * scale).clamp(0, bound).to(img.dtype)


def _scale_channel(img_chan):
    hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)

    nonzero_hist = hist[hist != 0]
    step = nonzero_hist[:-1].sum() // 255
    if step == 0:
        return img_chan

    lut = (torch.cumsum(hist, 0) + (step // 2)) // step
    lut = torch.nn.functional.pad(lut, [1, 0])[:-1].clamp(0, 255)

    return lut[img_chan.to(torch.int64)].to(torch.uint8)


def _equalize_single_image(img: Tensor) -> Tensor:
    return torch.stack([_scale_channel(img[c]) for c in range(img.size(0))])


def equalize(img: Tensor) -> Tensor:
1303
1304

    _assert_image_tensor(img)
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

    if not (3 <= img.ndim <= 4):
        raise TypeError("Input image tensor should have 3 or 4 dimensions, but found {}".format(img.ndim))
    if img.dtype != torch.uint8:
        raise TypeError("Only torch.uint8 image tensors are supported, but found {}".format(img.dtype))

    _assert_channels(img, [1, 3])

    if img.ndim == 3:
        return _equalize_single_image(img)

    return torch.stack([_equalize_single_image(x) for x in img])