functional_tensor.py 34.5 KB
Newer Older
vfdev's avatar
vfdev committed
1
import warnings
2
from typing import Optional, Tuple, List
vfdev's avatar
vfdev committed
3

4
import torch
5
from torch import Tensor
6
from torch.jit.annotations import BroadcastingList2
7
from torch.nn.functional import grid_sample, conv2d, interpolate, pad as torch_pad
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


14
def _assert_image_tensor(img: Tensor) -> None:
15
16
17
18
    if not _is_tensor_a_torch_image(img):
        raise TypeError("Tensor is not a torch image.")


19
def get_image_size(img: Tensor) -> List[int]:
20
    # Returns (w, h) of tensor image
21
22
    _assert_image_tensor(img)
    return [img.shape[-1], img.shape[-2]]
vfdev's avatar
vfdev committed
23
24


25
def get_image_num_channels(img: Tensor) -> int:
26
27
28
29
30
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

31
    raise TypeError(f"Input ndim should be 2 or more. Got {img.ndim}")
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
def _max_value(dtype: torch.dtype) -> float:
    # TODO: replace this method with torch.iinfo when it gets torchscript support.
    # https://github.com/pytorch/pytorch/issues/41492

    a = torch.tensor(2, dtype=dtype)
    signed = 1 if torch.tensor(0, dtype=dtype).is_signed() else 0
    bits = 1
    max_value = torch.tensor(-signed, dtype=torch.long)
    while True:
        next_value = a.pow(bits - signed).sub(1)
        if next_value > max_value:
            max_value = next_value
            bits *= 2
        else:
48
            break
49
50
51
    return max_value.item()


52
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
53
    c = get_image_num_channels(img)
54
    if c not in permitted:
55
        raise TypeError(f"Input image tensor permitted channel values are {permitted}, but found {c}")
56
57


58
59
60
61
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    if image.dtype == dtype:
        return image

62
    if image.is_floating_point():
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
        eps = 1e-3
        max_val = _max_value(dtype)
        result = image.mul(max_val + 1.0 - eps)
        return result.to(dtype)
    else:
        input_max = _max_value(image.dtype)

        # int to float
        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            image = image.to(dtype)
            return image / input_max

93
94
        output_max = _max_value(dtype)

95
96
97
98
99
        # int to int
        if input_max > output_max:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image // factor can produce different results
            factor = int((input_max + 1) // (output_max + 1))
100
            image = torch.div(image, factor, rounding_mode="floor")
101
102
103
104
105
106
107
108
109
            return image.to(dtype)
        else:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image * factor can produce different results
            factor = int((output_max + 1) // (input_max + 1))
            image = image.to(dtype)
            return image * factor


vfdev's avatar
vfdev committed
110
def vflip(img: Tensor) -> Tensor:
111
    _assert_image_tensor(img)
112

113
    return img.flip(-2)
114
115


vfdev's avatar
vfdev committed
116
def hflip(img: Tensor) -> Tensor:
117
    _assert_image_tensor(img)
118

119
    return img.flip(-1)
ekka's avatar
ekka committed
120
121


vfdev's avatar
vfdev committed
122
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
123
    _assert_image_tensor(img)
ekka's avatar
ekka committed
124

125
    w, h = get_image_size(img)
126
127
128
129
130
    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        padding_ltrb = [max(-left, 0), max(-top, 0), max(right - w, 0), max(bottom - h, 0)]
131
        return pad(img[..., max(top, 0) : bottom, max(left, 0) : right], padding_ltrb, fill=0)
132
    return img[..., top:bottom, left:right]
133
134


135
136
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    if img.ndim < 3:
137
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
138
    _assert_channels(img, [3])
139
140

    if num_output_channels not in (1, 3):
141
        raise ValueError("num_output_channels should be either 1 or 3")
142
143
144
145
146
147
148
149
150

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
151

152
    return l_img
153
154


vfdev's avatar
vfdev committed
155
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
156
    if brightness_factor < 0:
157
        raise ValueError(f"brightness_factor ({brightness_factor}) is not non-negative.")
158

159
    _assert_image_tensor(img)
160

161
162
    _assert_channels(img, [1, 3])

163
    return _blend(img, torch.zeros_like(img), brightness_factor)
164
165


vfdev's avatar
vfdev committed
166
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
167
    if contrast_factor < 0:
168
        raise ValueError(f"contrast_factor ({contrast_factor}) is not non-negative.")
169

170
    _assert_image_tensor(img)
171

172
173
    _assert_channels(img, [3, 1])
    c = get_image_num_channels(img)
174
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
175
176
177
178
    if c == 3:
        mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
    else:
        mean = torch.mean(img.to(dtype), dim=(-3, -2, -1), keepdim=True)
179
180
181
182

    return _blend(img, mean, contrast_factor)


183
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
184
    if not (-0.5 <= hue_factor <= 0.5):
185
        raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].")
186

187
    if not (isinstance(img, torch.Tensor)):
188
        raise TypeError("Input img should be Tensor image")
189

190
191
    _assert_image_tensor(img)

192
    _assert_channels(img, [1, 3])
193
    if get_image_num_channels(img) == 1:  # Match PIL behaviour
194
        return img
195

196
197
198
199
200
    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
201
    h, s, v = img.unbind(dim=-3)
202
    h = (h + hue_factor) % 1.0
203
    img = torch.stack((h, s, v), dim=-3)
204
205
206
207
208
209
210
211
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
212
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
213
    if saturation_factor < 0:
214
        raise ValueError(f"saturation_factor ({saturation_factor}) is not non-negative.")
215

216
    _assert_image_tensor(img)
217

218
219
220
221
    _assert_channels(img, [1, 3])

    if get_image_num_channels(img) == 1:  # Match PIL behaviour
        return img
222

223
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
224
225


226
227
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
    if not isinstance(img, torch.Tensor):
228
        raise TypeError("Input img should be a Tensor.")
229

230
231
    _assert_channels(img, [1, 3])

232
    if gamma < 0:
233
        raise ValueError("Gamma should be a non-negative real number")
234
235
236
237

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
238
        result = convert_image_dtype(result, torch.float32)
239
240
241

    result = (gain * result ** gamma).clamp(0, 1)

242
    result = convert_image_dtype(result, dtype)
243
244
245
    return result


vfdev's avatar
vfdev committed
246
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
247
    """DEPRECATED"""
248
    warnings.warn(
249
        "This method is deprecated and will be removed in future releases. Please, use ``F.center_crop`` instead."
250
251
    )

252
    _assert_image_tensor(img)
253
254
255

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
256
257
258
259
260
261
262
263
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
264
265
266
267

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
268
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
269
    """DEPRECATED"""
270
    warnings.warn(
271
        "This method is deprecated and will be removed in future releases. Please, use ``F.five_crop`` instead."
272
273
    )

274
    _assert_image_tensor(img)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

290
    return [tl, tr, bl, br, center]
291
292


vfdev's avatar
vfdev committed
293
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
294
    """DEPRECATED"""
295
    warnings.warn(
296
        "This method is deprecated and will be removed in future releases. Please, use ``F.ten_crop`` instead."
297
298
    )

299
    _assert_image_tensor(img)
300
301
302
303
304
305
306
307
308
309
310
311
312
313

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
314
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
315
    ratio = float(ratio)
316
317
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
318
319


320
def _rgb2hsv(img: Tensor) -> Tensor:
321
    r, g, b = img.unbind(dim=-3)
322

323
324
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
325
326
    maxc = torch.max(img, dim=-3).values
    minc = torch.min(img, dim=-3).values
327
328
329
330
331
332
333
334
335
336

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
337
338

    cr = maxc - minc
339
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
340
341
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
342
343
344
345
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
346
    cr_divisor = torch.where(eqc, ones, cr)
347
348
349
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
350
351
352
353

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
354
    h = hr + hg + hb
355
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
356
    return torch.stack((h, s, maxc), dim=-3)
357
358


359
def _hsv2rgb(img: Tensor) -> Tensor:
360
    h, s, v = img.unbind(dim=-3)
361
362
363
364
365
366
367
368
369
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

370
    mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
371

372
373
374
375
    a1 = torch.stack((v, q, p, p, t, v), dim=-3)
    a2 = torch.stack((t, v, v, q, p, p), dim=-3)
    a3 = torch.stack((p, p, t, v, v, q), dim=-3)
    a4 = torch.stack((a1, a2, a3), dim=-4)
376

377
    return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
378
379


380
381
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
382
383
384

    # crop if needed
    if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
385
386
        neg_min_padding = [-min(x, 0) for x in padding]
        crop_left, crop_right, crop_top, crop_bottom = neg_min_padding
387
        img = img[..., crop_top : img.shape[-2] - crop_bottom, crop_left : img.shape[-1] - crop_right]
388
389
        padding = [max(x, 0) for x in padding]

390
391
    in_sizes = img.size()

392
    _x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
393
394
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
395
    x_indices = torch.tensor(left_indices + _x_indices + right_indices, device=img.device)
396

397
    _y_indices = [i for i in range(in_sizes[-2])]
398
399
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
400
    y_indices = torch.tensor(top_indices + _y_indices + bottom_indices, device=img.device)
401
402
403
404
405
406
407
408
409
410

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


411
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
412
    _assert_image_tensor(img)
413
414
415
416
417
418
419
420
421
422
423
424

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
425
        raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple")
426

427
428
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
429
430
431

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
432
            # This maybe unreachable
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

448
449
450
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
451
452
453
    elif padding_mode == "symmetric":
        # route to another implementation
        return _pad_symmetric(img, p)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

469
    img = torch_pad(img, p, mode=padding_mode, value=float(fill))
470
471
472
473
474
475
476

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

477
    return img
vfdev's avatar
vfdev committed
478
479


480
481
482
483
484
def resize(
    img: Tensor,
    size: List[int],
    interpolation: str = "bilinear",
    max_size: Optional[int] = None,
485
    antialias: Optional[bool] = None,
486
) -> Tensor:
487
    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
488
489
490

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
491
    if not isinstance(interpolation, str):
vfdev's avatar
vfdev committed
492
493
        raise TypeError("Got inappropriate interpolation arg")

494
    if interpolation not in ["nearest", "bilinear", "bicubic"]:
vfdev's avatar
vfdev committed
495
496
497
498
499
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

500
501
    if isinstance(size, list):
        if len(size) not in [1, 2]:
502
            raise ValueError(
503
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
504
            )
505
506
507
508
509
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )
vfdev's avatar
vfdev committed
510

511
512
513
    if antialias is None:
        antialias = False

514
515
    if antialias and interpolation not in ["bilinear", "bicubic"]:
        raise ValueError("Antialias option is supported for bilinear and bicubic interpolation modes only")
516

517
    w, h = get_image_size(img)
vfdev's avatar
vfdev committed
518

519
520
    if isinstance(size, int) or len(size) == 1:  # specified size only for the smallest edge
        short, long = (w, h) if w <= h else (h, w)
Nicolas Hug's avatar
Nicolas Hug committed
521
        requested_new_short = size if isinstance(size, int) else size[0]
vfdev's avatar
vfdev committed
522

523
        if short == requested_new_short:
524
            return img
vfdev's avatar
vfdev committed
525

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)

    else:  # specified both h and w
        new_w, new_h = size[1], size[0]

vfdev's avatar
vfdev committed
542
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
vfdev's avatar
vfdev committed
543
544

    # Define align_corners to avoid warnings
545
    align_corners = False if interpolation in ["bilinear", "bicubic"] else None
vfdev's avatar
vfdev committed
546

547
    if antialias:
548
        if interpolation == "bilinear":
549
            img = torch.ops.torchvision._interpolate_bilinear2d_aa(img, [new_h, new_w], align_corners=False)
550
        elif interpolation == "bicubic":
551
            img = torch.ops.torchvision._interpolate_bicubic2d_aa(img, [new_h, new_w], align_corners=False)
552
553
    else:
        img = interpolate(img, size=[new_h, new_w], mode=interpolation, align_corners=align_corners)
vfdev's avatar
vfdev committed
554

555
    if interpolation == "bicubic" and out_dtype == torch.uint8:
vfdev's avatar
vfdev committed
556
        img = img.clamp(min=0, max=255)
vfdev's avatar
vfdev committed
557

vfdev's avatar
vfdev committed
558
    img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
vfdev's avatar
vfdev committed
559
560

    return img
vfdev's avatar
vfdev committed
561
562


vfdev's avatar
vfdev committed
563
def _assert_grid_transform_inputs(
564
565
566
567
568
569
570
    img: Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
    fill: Optional[List[float]],
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
571
572
573
574
575

    if not (isinstance(img, torch.Tensor)):
        raise TypeError("Input img should be Tensor")

    _assert_image_tensor(img)
vfdev's avatar
vfdev committed
576

577
    if matrix is not None and not isinstance(matrix, list):
578
        raise TypeError("Argument matrix should be a list")
vfdev's avatar
vfdev committed
579

580
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
581
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
582

583
584
585
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

586
587
588
589
    if fill is not None and not isinstance(fill, (int, float, tuple, list)):
        warnings.warn("Argument fill should be either int, float, tuple or list")

    # Check fill
590
    num_channels = get_image_num_channels(img)
591
    if isinstance(fill, (tuple, list)) and (len(fill) > 1 and len(fill) != num_channels):
592
593
594
595
        msg = (
            "The number of elements in 'fill' cannot broadcast to match the number of "
            "channels of the image ({} != {})"
        )
596
        raise ValueError(msg.format(len(fill), num_channels))
vfdev's avatar
vfdev committed
597

598
    if interpolation not in supported_interpolation_modes:
599
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")
vfdev's avatar
vfdev committed
600
601


vfdev's avatar
vfdev committed
602
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
vfdev's avatar
vfdev committed
603
    need_squeeze = False
604
    # make image NCHW
vfdev's avatar
vfdev committed
605
606
607
608
609
610
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
vfdev's avatar
vfdev committed
611
    if out_dtype not in req_dtypes:
vfdev's avatar
vfdev committed
612
        need_cast = True
vfdev's avatar
vfdev committed
613
        req_dtype = req_dtypes[0]
614
615
        img = img.to(req_dtype)
    return img, need_cast, need_squeeze, out_dtype
vfdev's avatar
vfdev committed
616
617


618
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype) -> Tensor:
vfdev's avatar
vfdev committed
619
620
621
622
    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
vfdev's avatar
vfdev committed
623
624
625
626
        if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            # it is better to round before cast
            img = torch.round(img)
        img = img.to(out_dtype)
vfdev's avatar
vfdev committed
627
628

    return img
vfdev's avatar
vfdev committed
629
630


631
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str, fill: Optional[List[float]]) -> Tensor:
632

633
634
635
636
637
638
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
        img,
        [
            grid.dtype,
        ],
    )
639
640
641
642

    if img.shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
643
644
645
646
647
648

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        dummy = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
        img = torch.cat((img, dummy), dim=1)

649
650
    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

651
652
653
654
655
656
657
    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # N * 1 * H * W
        img = img[:, :-1, :, :]  # N * C * H * W
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = torch.tensor(fill, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
658
        if mode == "nearest":
659
660
661
662
663
            mask = mask < 0.5
            img[mask] = fill_img[mask]
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

664
665
666
667
    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img


668
def _gen_affine_grid(
669
670
671
672
673
    theta: Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
674
675
676
677
678
679
680
681
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
682
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
683
684
685
686
    x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
687
688
    base_grid[..., 2].fill_(1)

689
690
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
691
692
693
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
694
def affine(
695
    img: Tensor, matrix: List[float], interpolation: str = "nearest", fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
696
) -> Tensor:
697
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
vfdev's avatar
vfdev committed
698

699
700
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
701
    shape = img.shape
702
    # grid will be generated on the same device as theta and img
703
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
704
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
vfdev's avatar
vfdev committed
705
706


707
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
708

709
710
711
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
712
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
713
714
715
716
717
718
719
720
    pts = torch.tensor(
        [
            [-0.5 * w, -0.5 * h, 1.0],
            [-0.5 * w, 0.5 * h, 1.0],
            [0.5 * w, 0.5 * h, 1.0],
            [0.5 * w, -0.5 * h, 1.0],
        ]
    )
721
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
722
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
723
724
725
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

726
727
728
729
730
731
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
732
733
734


def rotate(
735
736
737
738
739
    img: Tensor,
    matrix: List[float],
    interpolation: str = "nearest",
    expand: bool = False,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
740
) -> Tensor:
741
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
742
    w, h = img.shape[-1], img.shape[-2]
743
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
744
745
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
746
    # grid will be generated on the same device as theta and img
747
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
748
749

    return _apply_grid_transform(img, grid, interpolation, fill=fill)
750
751


752
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> Tensor:
753
754
755
756
757
758
759
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
760
761
762
763
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)
764
765

    d = 0.5
766
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
767
768
769
770
    x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
771
772
    base_grid[..., 2].fill_(1)

773
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
774
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
775
776
777
778
779
780
781
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
782
    img: Tensor, perspective_coeffs: List[float], interpolation: str = "bilinear", fill: Optional[List[float]] = None
783
) -> Tensor:
784
    if not (isinstance(img, torch.Tensor)):
785
        raise TypeError("Input img should be Tensor.")
786
787

    _assert_image_tensor(img)
788
789
790
791

    _assert_grid_transform_inputs(
        img,
        matrix=None,
792
793
794
        interpolation=interpolation,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
795
        coeffs=perspective_coeffs,
796
797
798
    )

    ow, oh = img.shape[-1], img.shape[-2]
799
800
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
801
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
802
803
804
805
806
807
808
809
810
811
812
813
814


def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
    pdf = torch.exp(-0.5 * (x / sigma).pow(2))
    kernel1d = pdf / pdf.sum()

    return kernel1d


def _get_gaussian_kernel2d(
815
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
816
817
818
819
820
821
822
823
) -> Tensor:
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
    kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
    return kernel2d


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
824
    if not (isinstance(img, torch.Tensor)):
825
        raise TypeError(f"img should be Tensor. Got {type(img)}")
826
827

    _assert_image_tensor(img)
828
829
830
831
832

    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

833
834
835
836
837
838
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
        img,
        [
            kernel.dtype,
        ],
    )
839
840
841
842
843
844
845
846

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
    img = torch_pad(img, padding, mode="reflect")
    img = conv2d(img, kernel, groups=img.shape[-3])

    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img
847
848
849


def invert(img: Tensor) -> Tensor:
850
851

    _assert_image_tensor(img)
852
853

    if img.ndim < 3:
854
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
855
856
857
858
859
860
861
862

    _assert_channels(img, [1, 3])

    bound = torch.tensor(1 if img.is_floating_point() else 255, dtype=img.dtype, device=img.device)
    return bound - img


def posterize(img: Tensor, bits: int) -> Tensor:
863
864

    _assert_image_tensor(img)
865
866

    if img.ndim < 3:
867
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
868
    if img.dtype != torch.uint8:
869
        raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
870
871

    _assert_channels(img, [1, 3])
872
    mask = -int(2 ** (8 - bits))  # JIT-friendly for: ~(2 ** (8 - bits) - 1)
873
874
875
876
    return img & mask


def solarize(img: Tensor, threshold: float) -> Tensor:
877
878

    _assert_image_tensor(img)
879
880

    if img.ndim < 3:
881
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

    _assert_channels(img, [1, 3])

    inverted_img = invert(img)
    return torch.where(img >= threshold, inverted_img, img)


def _blurred_degenerate_image(img: Tensor) -> Tensor:
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    kernel = torch.ones((3, 3), dtype=dtype, device=img.device)
    kernel[1, 1] = 5.0
    kernel /= kernel.sum()
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

897
898
899
900
901
902
    result_tmp, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(
        img,
        [
            kernel.dtype,
        ],
    )
903
904
905
906
907
908
909
910
911
912
913
    result_tmp = conv2d(result_tmp, kernel, groups=result_tmp.shape[-3])
    result_tmp = _cast_squeeze_out(result_tmp, need_cast, need_squeeze, out_dtype)

    result = img.clone()
    result[..., 1:-1, 1:-1] = result_tmp

    return result


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
    if sharpness_factor < 0:
914
        raise ValueError(f"sharpness_factor ({sharpness_factor}) is not non-negative.")
915

916
    _assert_image_tensor(img)
917
918
919
920
921
922
923
924
925
926

    _assert_channels(img, [1, 3])

    if img.size(-1) <= 2 or img.size(-2) <= 2:
        return img

    return _blend(img, _blurred_degenerate_image(img), sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
927
928

    _assert_image_tensor(img)
929
930

    if img.ndim < 3:
931
        raise TypeError(f"Input image tensor should have at least 3 dimensions, but found {img.ndim}")
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

    _assert_channels(img, [1, 3])

    bound = 1.0 if img.is_floating_point() else 255.0
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32

    minimum = img.amin(dim=(-2, -1), keepdim=True).to(dtype)
    maximum = img.amax(dim=(-2, -1), keepdim=True).to(dtype)
    eq_idxs = torch.where(minimum == maximum)[0]
    minimum[eq_idxs] = 0
    maximum[eq_idxs] = bound
    scale = bound / (maximum - minimum)

    return ((img - minimum) * scale).clamp(0, bound).to(img.dtype)


948
def _scale_channel(img_chan: Tensor) -> Tensor:
949
950
951
952
953
954
955
956
    # TODO: we should expect bincount to always be faster than histc, but this
    # isn't always the case. Once
    # https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if
    # block and only use bincount.
    if img_chan.is_cuda:
        hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)
    else:
        hist = torch.bincount(img_chan.view(-1), minlength=256)
957
958

    nonzero_hist = hist[hist != 0]
959
    step = torch.div(nonzero_hist[:-1].sum(), 255, rounding_mode="floor")
960
961
962
    if step == 0:
        return img_chan

963
    lut = torch.div(torch.cumsum(hist, 0) + torch.div(step, 2, rounding_mode="floor"), step, rounding_mode="floor")
964
965
966
967
968
969
970
971
972
973
    lut = torch.nn.functional.pad(lut, [1, 0])[:-1].clamp(0, 255)

    return lut[img_chan.to(torch.int64)].to(torch.uint8)


def _equalize_single_image(img: Tensor) -> Tensor:
    return torch.stack([_scale_channel(img[c]) for c in range(img.size(0))])


def equalize(img: Tensor) -> Tensor:
974
975

    _assert_image_tensor(img)
976
977

    if not (3 <= img.ndim <= 4):
978
        raise TypeError(f"Input image tensor should have 3 or 4 dimensions, but found {img.ndim}")
979
    if img.dtype != torch.uint8:
980
        raise TypeError(f"Only torch.uint8 image tensors are supported, but found {img.dtype}")
981
982
983
984
985
986
987

    _assert_channels(img, [1, 3])

    if img.ndim == 3:
        return _equalize_single_image(img)

    return torch.stack([_equalize_single_image(x) for x in img])