functional_tensor.py 33.1 KB
Newer Older
vfdev's avatar
vfdev committed
1
import warnings
vfdev's avatar
vfdev committed
2
from typing import Optional, Dict, Tuple
vfdev's avatar
vfdev committed
3

4
import torch
5
from torch import Tensor
6
from torch.nn.functional import grid_sample
7
from torch.jit.annotations import List, BroadcastingList2
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


vfdev's avatar
vfdev committed
14
def _get_image_size(img: Tensor) -> List[int]:
vfdev's avatar
vfdev committed
15
    """Returns (w, h) of tensor image"""
vfdev's avatar
vfdev committed
16
17
18
19
20
    if _is_tensor_a_torch_image(img):
        return [img.shape[-1], img.shape[-2]]
    raise TypeError("Unexpected type {}".format(type(img)))


21
22
23
24
25
26
27
28
29
def _get_image_num_channels(img: Tensor) -> int:
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

    raise TypeError("Unexpected type {}".format(type(img)))


vfdev's avatar
vfdev committed
30
def vflip(img: Tensor) -> Tensor:
31
32
33
    """Vertically flip the given the Image Tensor.

    Args:
34
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
35
36
37
38

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
39
    if not _is_tensor_a_torch_image(img):
40
41
        raise TypeError('tensor is not a torch image.')

42
    return img.flip(-2)
43
44


vfdev's avatar
vfdev committed
45
def hflip(img: Tensor) -> Tensor:
46
47
48
    """Horizontally flip the given the Image Tensor.

    Args:
49
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
50
51
52
53

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
54
    if not _is_tensor_a_torch_image(img):
55
56
        raise TypeError('tensor is not a torch image.')

57
    return img.flip(-1)
ekka's avatar
ekka committed
58
59


vfdev's avatar
vfdev committed
60
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
ekka's avatar
ekka committed
61
    """Crop the given Image Tensor.
62

ekka's avatar
ekka committed
63
    Args:
vfdev's avatar
vfdev committed
64
        img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image.
ekka's avatar
ekka committed
65
66
67
68
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
69

ekka's avatar
ekka committed
70
71
72
    Returns:
        Tensor: Cropped image.
    """
73
    if not _is_tensor_a_torch_image(img):
vfdev's avatar
vfdev committed
74
        raise TypeError("tensor is not a torch image.")
ekka's avatar
ekka committed
75
76

    return img[..., top:top + height, left:left + width]
77
78


79
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
80
81
82
83
84
85
    """Convert the given RGB Image Tensor to Grayscale.
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].
86
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
87
88

    Returns:
89
90
91
92
        Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
93
94

    """
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
    c = img.shape[-3]
    if c != 3:
        raise TypeError("Input image tensor should 3 channels, but found {}".format(c))

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
112

113
    return l_img
114
115


vfdev's avatar
vfdev committed
116
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
117
118
119
120
121
122
123
124
125
126
127
    """Adjust brightness of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
128
129
130
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

131
    if not _is_tensor_a_torch_image(img):
132
133
        raise TypeError('tensor is not a torch image.')

134
    return _blend(img, torch.zeros_like(img), brightness_factor)
135
136


vfdev's avatar
vfdev committed
137
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
138
139
140
141
142
143
144
145
146
147
148
    """Adjust contrast of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
149
150
151
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

152
    if not _is_tensor_a_torch_image(img):
153
154
        raise TypeError('tensor is not a torch image.')

155
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
156
157
158
159

    return _blend(img, mean, contrast_factor)


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
185
    if not (-0.5 <= hue_factor <= 0.5):
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_tensor_a_torch_image(img):
        raise TypeError('tensor is not a torch image.')

    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
    h, s, v = img.unbind(0)
    h += hue_factor
    h = h % 1.0
    img = torch.stack((h, s, v))
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
208
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
209
210
211
212
    """Adjust color saturation of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
213
214
215
        saturation_factor (float):  How much to adjust the saturation. Can be any
            non negative number. 0 gives a black and white image, 1 gives the
            original image while 2 enhances the saturation by a factor of 2.
216
217
218
219

    Returns:
        Tensor: Saturation adjusted image.
    """
220
221
222
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

223
    if not _is_tensor_a_torch_image(img):
224
225
        raise TypeError('tensor is not a torch image.')

226
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
227
228


229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
    r"""Adjust gamma of an RGB image.

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

    .. math::
        `I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}`

    See `Gamma Correction`_ for more details.

    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction

    Args:
        img (Tensor): Tensor of RBG values to be adjusted.
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """

    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be a Tensor. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
        result = result / 255.0

    result = (gain * result ** gamma).clamp(0, 1)

    if result.dtype != dtype:
        eps = 1e-3
        result = (255 + 1.0 - eps) * result
    result = result.to(dtype)
    return result


vfdev's avatar
vfdev committed
270
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
271
272
273
274
275
276
    """DEPRECATED. Crop the Image Tensor and resize it to desired size.

    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.center_crop`` instead.
277
278

    Args:
vfdev's avatar
vfdev committed
279
        img (Tensor): Image to be cropped.
280
281
282
283
284
285
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
286
287
288
289
290
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.center_crop`` instead."
    )

291
    if not _is_tensor_a_torch_image(img):
292
293
294
295
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
296
297
298
299
300
301
302
303
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
304
305
306
307

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
308
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
309
310
311
312
313
314
315
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop.

    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.five_crop`` instead.

316
    .. Note::
317

318
        This transform returns a List of Tensors and there may be a
319
320
321
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
322
323
324
325
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
326
327

    Returns:
328
       List: List (tl, tr, bl, br, center)
329
330
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
331
332
333
334
335
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.five_crop`` instead."
    )

336
    if not _is_tensor_a_torch_image(img):
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

353
    return [tl, tr, bl, br, center]
354
355


vfdev's avatar
vfdev committed
356
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
357
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop plus the
358
        flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
359

360
361
362
363
364
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.ten_crop`` instead.

365
    .. Note::
366

367
        This transform returns a List of images and there may be a
368
369
370
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
371
372
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
373
374
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
vfdev's avatar
vfdev committed
375
        vertical_flip (bool): Use vertical flipping instead of horizontal
376
377

    Returns:
378
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
379
380
381
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
382
383
384
385
386
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.ten_crop`` instead."
    )

387
    if not _is_tensor_a_torch_image(img):
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
403
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
404
405
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
406
407
408
409
410


def _rgb2hsv(img):
    r, g, b = img.unbind(0)

411
412
413
414
415
416
417
418
419
420
421
422
    maxc = torch.max(img, dim=0).values
    minc = torch.min(img, dim=0).values

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
423
424

    cr = maxc - minc
425
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
426
427
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
428
429
430
431
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
432
    cr_divisor = torch.where(eqc, ones, cr)
433
434
435
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
    return torch.stack((h, s, maxc))


def _hsv2rgb(img):
    h, s, v = img.unbind(0)
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

456
    mask = i == torch.arange(6, device=i.device)[:, None, None]
457
458
459
460
461
462
463

    a1 = torch.stack((v, q, p, p, t, v))
    a2 = torch.stack((t, v, v, q, p, p))
    a3 = torch.stack((p, p, t, v, v, q))
    a4 = torch.stack((a1, a2, a3))

    return torch.einsum("ijk, xijk -> xjk", mask.to(dtype=img.dtype), a4)
464
465


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


489
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
490
491
492
493
494
495
496
497
498
499
500
501
    r"""Pad the given Tensor Image on all sides with specified padding mode and fill value.

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
502
503
        padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant.
            Mode symmetric is not yet supported for Tensor inputs.
504
505
506

            - constant: pads with a constant value, this value is specified with fill

507
508
509
510
511
512
513
            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

514
515
516
517
518
            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    Returns:
        Tensor: Padded image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

539
540
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
541
542
543

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
544
            # This maybe unreachable
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

560
561
562
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
563
564
565
566
567
    elif padding_mode == "symmetric":
        # route to another implementation
        if p[0] < 0 or p[1] < 0 or p[2] < 0 or p[3] < 0:  # no any support for torch script
            raise ValueError("Padding can not be negative for symmetric padding_mode")
        return _pad_symmetric(img, p)
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

583
    img = torch.nn.functional.pad(img, p, mode=padding_mode, value=float(fill))
584
585
586
587
588
589
590

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

591
    return img
vfdev's avatar
vfdev committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605


def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor:
    r"""Resize the input Tensor to the given size.

    Args:
        img (Tensor): Image to be resized.
        size (int or tuple or list): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as a single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
606
607
        interpolation (int, optional): Desired interpolation. Default is bilinear (=2). Other supported values:
            nearest(=0) and bicubic(=3).
vfdev's avatar
vfdev committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

    Returns:
        Tensor: Resized image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
    if not isinstance(interpolation, int):
        raise TypeError("Got inappropriate interpolation arg")

    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
        3: "bicubic",
    }

    if interpolation not in _interpolation_modes:
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

    if isinstance(size, list) and len(size) not in [1, 2]:
        raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                         "{} element tuple/list".format(len(size)))

    w, h = _get_image_size(img)

    if isinstance(size, int):
        size_w, size_h = size, size
    elif len(size) < 2:
        size_w, size_h = size[0], size[0]
    else:
643
        size_w, size_h = size[1], size[0]  # Convention (h, w)
vfdev's avatar
vfdev committed
644
645
646
647
648
649
650

    if isinstance(size, int) or len(size) < 2:
        if w < h:
            size_h = int(size_w * h / w)
        else:
            size_w = int(size_h * w / h)

651
652
        if (w <= h and w == size_w) or (h <= w and h == size_h):
            return img
vfdev's avatar
vfdev committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

    # make image NCHW
    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    mode = _interpolation_modes[interpolation]

    out_dtype = img.dtype
    need_cast = False
    if img.dtype not in (torch.float32, torch.float64):
        need_cast = True
        img = img.to(torch.float32)

    # Define align_corners to avoid warnings
    align_corners = False if mode in ["bilinear", "bicubic"] else None

    img = torch.nn.functional.interpolate(img, size=(size_h, size_w), mode=mode, align_corners=align_corners)

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        if mode == "bicubic":
            img = img.clamp(min=0, max=255)
        img = img.to(out_dtype)

    return img
vfdev's avatar
vfdev committed
682
683


vfdev's avatar
vfdev committed
684
def _assert_grid_transform_inputs(
685
686
687
688
689
690
        img: Tensor,
        matrix: Optional[List[float]],
        resample: int,
        fillcolor: Optional[int],
        _interpolation_modes: Dict[int, str],
        coeffs: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
691
692
693
):
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
        raise TypeError("img should be Tensor Image. Got {}".format(type(img)))
vfdev's avatar
vfdev committed
694

695
    if matrix is not None and not isinstance(matrix, list):
vfdev's avatar
vfdev committed
696
        raise TypeError("Argument matrix should be a list. Got {}".format(type(matrix)))
vfdev's avatar
vfdev committed
697

698
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
699
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
700

701
702
703
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

vfdev's avatar
vfdev committed
704
    if fillcolor is not None:
vfdev's avatar
vfdev committed
705
        warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero")
vfdev's avatar
vfdev committed
706
707

    if resample not in _interpolation_modes:
708
        raise ValueError("Resampling mode '{}' is unsupported with Tensor input".format(resample))
vfdev's avatar
vfdev committed
709
710


vfdev's avatar
vfdev committed
711
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str) -> Tensor:
vfdev's avatar
vfdev committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    # make image NCHW
    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if img.dtype not in (torch.float32, torch.float64):
        need_cast = True
        img = img.to(torch.float32)

    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        # it is better to round before cast
        img = torch.round(img).to(out_dtype)

    return img
vfdev's avatar
vfdev committed
734
735


736
737
738
739
740
741
742
743
744
745
def _gen_affine_grid(
        theta: Tensor, w: int, h: int, ow: int, oh: int,
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
746
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
747
748
749
750
    base_grid[..., 0].copy_(torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow))
    base_grid[..., 1].copy_(torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh).unsqueeze_(-1))
    base_grid[..., 2].fill_(1)

751
752
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
753
754
755
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def affine(
        img: Tensor, matrix: List[float], resample: int = 0, fillcolor: Optional[int] = None
) -> Tensor:
    """Apply affine transformation on the Tensor image keeping image center invariant.

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation.
        resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values:
            bilinear(=2).
        fillcolor (int, optional): this option is not supported for Tensor input. Fill value for the area outside the
            transform in the output image is always 0.

    Returns:
        Tensor: Transformed image.
    """
    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(img, matrix, resample, fillcolor, _interpolation_modes)

779
    theta = torch.tensor(matrix, dtype=torch.float, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
780
    shape = img.shape
781
    # grid will be generated on the same device as theta and img
782
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
vfdev's avatar
vfdev committed
783
784
785
786
    mode = _interpolation_modes[resample]
    return _apply_grid_transform(img, grid, mode)


787
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
788

789
790
791
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
792
793
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    pts = torch.tensor([
794
795
796
797
        [-0.5 * w, -0.5 * h, 1.0],
        [-0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, -0.5 * h, 1.0],
vfdev's avatar
vfdev committed
798
    ])
799
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
800
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
801
802
803
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

804
805
806
807
808
809
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
810
811
812
813
814
815
816
817
818
819


def rotate(
        img: Tensor, matrix: List[float], resample: int = 0, expand: bool = False, fill: Optional[int] = None
) -> Tensor:
    """Rotate the Tensor image by angle.

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for rotation transformation.
820
            Translation part (``matrix[2]`` and ``matrix[5]``) should be in pixel coordinates.
vfdev's avatar
vfdev committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values:
            bilinear(=2).
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        fill (n-tuple or int or float): this option is not supported for Tensor input.
            Fill value for the area outside the transform in the output image is always 0.

    Returns:
        Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(img, matrix, resample, fill, _interpolation_modes)
842
    w, h = img.shape[-1], img.shape[-2]
843
844
845
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
    theta = torch.tensor(matrix, dtype=torch.float, device=img.device).reshape(1, 2, 3)
    # grid will be generated on the same device as theta and img
846
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
vfdev's avatar
vfdev committed
847
848
849
    mode = _interpolation_modes[resample]

    return _apply_grid_transform(img, grid, mode)
850
851


852
def _perspective_grid(coeffs: List[float], ow: int, oh: int, device: torch.device):
853
854
855
856
857
858
859
860
861
862
863
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #

    theta1 = torch.tensor([[
        [coeffs[0], coeffs[1], coeffs[2]],
        [coeffs[3], coeffs[4], coeffs[5]]
864
    ]], dtype=torch.float, device=device)
865
866
867
    theta2 = torch.tensor([[
        [coeffs[6], coeffs[7], 1.0],
        [coeffs[6], coeffs[7], 1.0]
868
    ]], dtype=torch.float, device=device)
869
870

    d = 0.5
871
    base_grid = torch.empty(1, oh, ow, 3, dtype=torch.float, device=device)
872
873
874
875
    base_grid[..., 0].copy_(torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow))
    base_grid[..., 1].copy_(torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh).unsqueeze_(-1))
    base_grid[..., 2].fill_(1)

876
877
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=torch.float, device=device)
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
        img: Tensor, perspective_coeffs: List[float], interpolation: int = 2, fill: Optional[int] = None
) -> Tensor:
    """Perform perspective transform of the given Tensor image.

    Args:
        img (Tensor): Image to be transformed.
        perspective_coeffs (list of float): perspective transformation coefficients.
        interpolation (int): Interpolation type. Default, ``PIL.Image.BILINEAR``.
        fill (n-tuple or int or float): this option is not supported for Tensor input. Fill value for the area
            outside the transform in the output image is always 0.

    Returns:
        Tensor: transformed image.
    """
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(
        img,
        matrix=None,
        resample=interpolation,
        fillcolor=fill,
        _interpolation_modes=_interpolation_modes,
        coeffs=perspective_coeffs
    )

    ow, oh = img.shape[-1], img.shape[-2]
917
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, device=img.device)
918
919
920
    mode = _interpolation_modes[interpolation]

    return _apply_grid_transform(img, grid, mode)