functional_tensor.py 7.9 KB
Newer Older
1
import torch
2
3
from torch import Tensor
from torch.jit.annotations import Optional, List, BroadcastingList2, Tuple
4
5


6
def _is_tensor_a_torch_image(input):
7
    return input.ndim >= 2
8
9
10
11


def vflip(img):
    # type: (Tensor) -> Tensor
12
13
14
    """Vertically flip the given the Image Tensor.

    Args:
15
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
16
17
18
19

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
20
    if not _is_tensor_a_torch_image(img):
21
22
        raise TypeError('tensor is not a torch image.')

23
    return img.flip(-2)
24
25


26
27
def hflip(img):
    # type: (Tensor) -> Tensor
28
29
30
    """Horizontally flip the given the Image Tensor.

    Args:
31
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
32
33
34
35

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
36
    if not _is_tensor_a_torch_image(img):
37
38
        raise TypeError('tensor is not a torch image.')

39
    return img.flip(-1)
ekka's avatar
ekka committed
40
41
42


def crop(img, top, left, height, width):
43
    # type: (Tensor, int, int, int, int) -> Tensor
ekka's avatar
ekka committed
44
    """Crop the given Image Tensor.
45

ekka's avatar
ekka committed
46
47
48
49
50
51
    Args:
        img (Tensor): Image to be cropped in the form [C, H, W]. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
52

ekka's avatar
ekka committed
53
54
55
    Returns:
        Tensor: Cropped image.
    """
56
    if not _is_tensor_a_torch_image(img):
ekka's avatar
ekka committed
57
58
59
        raise TypeError('tensor is not a torch image.')

    return img[..., top:top + height, left:left + width]
60
61


62
def rgb_to_grayscale(img):
63
    # type: (Tensor) -> Tensor
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    """Convert the given RGB Image Tensor to Grayscale.
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].

    Returns:
        Tensor: Grayscale image.

    """
    if img.shape[0] != 3:
        raise TypeError('Input Image does not contain 3 Channels')

    return (0.2989 * img[0] + 0.5870 * img[1] + 0.1140 * img[2]).to(img.dtype)


81
def adjust_brightness(img, brightness_factor):
82
    # type: (Tensor, float) -> Tensor
83
84
85
86
87
88
89
90
91
92
93
    """Adjust brightness of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
94
    if not _is_tensor_a_torch_image(img):
95
96
        raise TypeError('tensor is not a torch image.')

97
    return _blend(img, torch.zeros_like(img), brightness_factor)
98
99
100


def adjust_contrast(img, contrast_factor):
101
    # type: (Tensor, float) -> Tensor
102
103
104
105
106
107
108
109
110
111
112
    """Adjust contrast of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
113
    if not _is_tensor_a_torch_image(img):
114
115
        raise TypeError('tensor is not a torch image.')

116
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
117
118
119
120
121

    return _blend(img, mean, contrast_factor)


def adjust_saturation(img, saturation_factor):
122
    # type: (Tensor, float) -> Tensor
123
124
125
126
127
128
129
130
131
132
133
    """Adjust color saturation of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        Tensor: Saturation adjusted image.
    """
134
    if not _is_tensor_a_torch_image(img):
135
136
        raise TypeError('tensor is not a torch image.')

137
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
138
139


140
def center_crop(img, output_size):
141
    # type: (Tensor, BroadcastingList2[int]) -> Tensor
142
143
144
145
146
147
148
149
150
151
    """Crop the Image Tensor and resize it to desired size.

    Args:
        img (Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
152
    if not _is_tensor_a_torch_image(img):
153
154
155
156
157
158
159
160
161
162
163
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))

    return crop(img, crop_top, crop_left, crop_height, crop_width)


def five_crop(img, size):
164
    # type: (Tensor, BroadcastingList2[int]) -> List[Tensor]
165
166
    """Crop the given Image Tensor into four corners and the central crop.
    .. Note::
167
        This transform returns a List of Tensors and there may be a
168
169
170
171
172
173
174
175
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.

    Returns:
176
       List: List (tl, tr, bl, br, center)
177
178
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
179
    if not _is_tensor_a_torch_image(img):
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

196
    return [tl, tr, bl, br, center]
197
198
199


def ten_crop(img, size, vertical_flip=False):
200
    # type: (Tensor, BroadcastingList2[int], bool) -> List[Tensor]
201
202
203
    """Crop the given Image Tensor into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
    .. Note::
204
        This transform returns a List of images and there may be a
205
206
207
208
209
210
211
212
213
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
214
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
215
216
217
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
218
    if not _is_tensor_a_torch_image(img):
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


234
def _blend(img1, img2, ratio):
235
236
    # type: (Tensor, Tensor, float) -> Tensor
    bound = 1 if img1.dtype in [torch.half, torch.float32, torch.float64] else 255
237
    return (ratio * img1 + (1 - ratio) * img2).clamp(0, bound).to(img1.dtype)