_geometry.py 85.3 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import tv_tensors
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _compute_resized_output_size as __compute_resized_output_size,
15
    _get_perspective_coeffs,
16
    _interpolation_modes_from_int,
17
    InterpolationMode,
18
    pil_modes_mapping,
19
20
    pil_to_tensor,
    to_pil_image,
21
)
22

23
24
from torchvision.utils import _log_api_usage_once

Nicolas Hug's avatar
Nicolas Hug committed
25
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format
26

27
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
28

29

30
31
32
33
34
35
36
37
38
39
40
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


41
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
42
    """See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
54
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
55
56
57
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
60
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
64
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
65
    return horizontal_flip_image(mask)
66
67


68
def horizontal_flip_bounding_boxes(
69
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
87
88
89
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
90
    return tv_tensors.wrap(output, like=inpt)
91
92


93
@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
94
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
95
    return horizontal_flip_image(video)
96
97


98
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
99
    """See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
100
    if torch.jit.is_scripting():
101
        return vertical_flip_image(inpt)
102
103
104
105
106

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
107
108


109
@_register_kernel_internal(vertical_flip, torch.Tensor)
110
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
111
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
112
113
114
    return image.flip(-2)


115
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
Nicolas Hug's avatar
Nicolas Hug committed
116
def _vertical_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
Philip Meier's avatar
Philip Meier committed
117
    return _FP.vflip(image)
118
119


120
@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
121
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
122
    return vertical_flip_image(mask)
123
124


125
def vertical_flip_bounding_boxes(
126
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
127
) -> torch.Tensor:
128
    shape = bounding_boxes.shape
129

130
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
131

132
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
133
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
134
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
135
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
136
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
137
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
138

139
    return bounding_boxes.reshape(shape)
140
141


142
143
@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
144
145
146
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
147
    return tv_tensors.wrap(output, like=inpt)
148

149

150
@_register_kernel_internal(vertical_flip, tv_tensors.Video)
151
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
152
    return vertical_flip_image(video)
153
154


155
156
157
158
159
160
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


161
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
162
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
163
164
165
) -> List[int]:
    if isinstance(size, int):
        size = [size]
166
167
168
169
170
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
171
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
172
173


174
def resize(
175
    inpt: torch.Tensor,
176
177
178
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
179
    antialias: Optional[bool] = True,
180
) -> torch.Tensor:
181
    """See :class:`~torchvision.transforms.v2.Resize` for details."""
182
    if torch.jit.is_scripting():
183
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
184
185
186
187
188

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
189
190


191
192
193
194
195
196
# This is an internal helper method for resize_image. We should put it here instead of keeping it
# inside resize_image due to torchscript.
# uint8 dtype support for bilinear and bicubic is limited to cpu and
# according to our benchmarks on eager, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
def _do_native_uint8_resize_on_cpu(interpolation: InterpolationMode) -> bool:
    if interpolation == InterpolationMode.BILINEAR:
197
        if torch.compiler.is_compiling():
198
199
200
201
202
203
204
            return True
        else:
            return "AVX2" in torch.backends.cpu.get_cpu_capability()

    return interpolation == InterpolationMode.BICUBIC


205
@_register_kernel_internal(resize, torch.Tensor)
206
@_register_kernel_internal(resize, tv_tensors.Image)
207
def resize_image(
208
209
    image: torch.Tensor,
    size: List[int],
210
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
211
    max_size: Optional[int] = None,
212
    antialias: Optional[bool] = True,
213
) -> torch.Tensor:
214
    interpolation = _check_interpolation(interpolation)
215
    antialias = False if antialias is None else antialias
216
217
218
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
219
    else:
220
        # The default of antialias is True from 0.17, so we don't warn or
221
222
        # error if other interpolation modes are used. This is documented.
        antialias = False
223

224
    shape = image.shape
225
    numel = image.numel()
226
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
227
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
228

229
230
    if (new_height, new_width) == (old_height, old_width):
        return image
231
    elif numel > 0:
232
        dtype = image.dtype
233
234
235
236
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
237
        elif image.device.type == "cpu":
238
            if _do_native_uint8_resize_on_cpu(interpolation):
239
                acceptable_dtypes.append(torch.uint8)
240

241
        image = image.reshape(-1, num_channels, old_height, old_width)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
257
258
259
260
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
261
262
            image,
            size=[new_height, new_width],
263
264
            mode=interpolation.value,
            align_corners=align_corners,
265
266
            antialias=antialias,
        )
267

268
269
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
270
                # This path is hit on non-AVX archs, or on GPU.
271
                image = image.clamp_(min=0, max=255)
272
273
274
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
275

276
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
277
278


279
def _resize_image_pil(
280
    image: PIL.Image.Image,
281
    size: Union[Sequence[int], int],
282
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
283
284
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
285
286
287
288
289
290
291
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

292
    interpolation = _check_interpolation(interpolation)
293
294
295
296
297

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
298
299


300
@_register_kernel_internal(resize, PIL.Image.Image)
301
def __resize_image_pil_dispatch(
302
303
304
305
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
306
    antialias: Optional[bool] = True,
307
308
309
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
310
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
311
312


313
314
315
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
316
317
318
319
        needs_squeeze = True
    else:
        needs_squeeze = False

320
    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
321
322
323
324
325

    if needs_squeeze:
        output = output.squeeze(0)

    return output
326
327


328
@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
329
def _resize_mask_dispatch(
330
331
    inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
332
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
333
    return tv_tensors.wrap(output, like=inpt)
334
335


336
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
337
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
338
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
339
340
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
341
342

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
343
        return bounding_boxes, canvas_size
344

345
346
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
347
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
348
    return (
349
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
350
351
        (new_height, new_width),
    )
352
353


354
@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
355
def _resize_bounding_boxes_dispatch(
356
357
    inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
358
359
360
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
361
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
362
363


364
@_register_kernel_internal(resize, tv_tensors.Video)
365
366
367
def resize_video(
    video: torch.Tensor,
    size: List[int],
368
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
369
    max_size: Optional[int] = None,
370
    antialias: Optional[bool] = True,
371
) -> torch.Tensor:
372
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
373
374


375
def affine(
376
    inpt: torch.Tensor,
377
378
379
380
381
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
382
    fill: _FillTypeJIT = None,
383
    center: Optional[List[float]] = None,
384
) -> torch.Tensor:
385
    """See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
386
    if torch.jit.is_scripting():
387
        return affine_image(
388
            inpt,
389
            angle=angle,
390
391
392
393
394
395
396
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
411
412


413
def _affine_parse_args(
414
    angle: Union[int, float],
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

457
458
459
460
461
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
462
463
464
465

    return angle, translate, shear, center


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
528
    if torch.compiler.is_compiling() and not torch.jit.is_scripting():
529
530
531
532
533
534
        return _compute_affine_output_size_python(matrix, w, h)
    else:
        return _compute_affine_output_size_tensor(matrix, w, h)


def _compute_affine_output_size_tensor(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
def _compute_affine_output_size_python(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Mostly copied from PIL implementation:
    # The only difference is with transformed points as input matrix has zero translation part here and
    # PIL has a centered translation part.
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    a, b, c, d, e, f = matrix
    xx = []
    yy = []

    half_w = 0.5 * w
    half_h = 0.5 * h
    for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w, half_h), (-half_w, half_h)):
        nx = a * x + b * y + c
        ny = d * x + e * y + f
        xx.append(nx + half_w)
        yy.append(ny + half_h)

    nw = math.ceil(max(xx)) - math.floor(min(xx))
    nh = math.ceil(max(yy)) - math.floor(min(yy))
    return int(nw), int(nh)  # w, h


592
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
593
594
595
596
597
598
599
600
601
602
    input_shape = img.shape
    output_height, output_width = grid.shape[1], grid.shape[2]
    num_channels, input_height, input_width = input_shape[-3:]
    output_shape = input_shape[:-3] + (num_channels, output_height, output_width)

    if img.numel() == 0:
        return img.reshape(output_shape)

    img = img.reshape(-1, num_channels, input_height, input_width)
    squashed_batch_size = img.shape[0]
603

604
605
606
607
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

608
    if squashed_batch_size > 1:
609
        # Apply same grid to a batch of images
610
        grid = grid.expand(squashed_batch_size, -1, -1, -1)
611
612
613

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
614
615
616
        mask = torch.ones(
            (squashed_batch_size, 1, input_height, input_width), dtype=float_img.dtype, device=float_img.device
        )
617
618
619
620
621
622
623
624
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
625
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
626
627
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
628
            float_img = torch.where(mask < 0.5, fill_img.expand_as(float_img), float_img)
629
630
631
632
633
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

634
635
    img = float_img.round_().to(img.dtype) if not fp else float_img

636
    return img.reshape(output_shape)
637
638
639
640
641
642


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
643
    fill: _FillTypeJIT,
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


699
@_register_kernel_internal(affine, torch.Tensor)
700
@_register_kernel_internal(affine, tv_tensors.Image)
701
def affine_image(
702
    image: torch.Tensor,
703
    angle: Union[int, float],
704
705
706
    translate: List[float],
    scale: float,
    shear: List[float],
707
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
708
    fill: _FillTypeJIT = None,
709
710
    center: Optional[List[float]] = None,
) -> torch.Tensor:
711
712
    interpolation = _check_interpolation(interpolation)

713
714
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

715
716
    height, width = image.shape[-2:]

717
718
719
    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
720
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
721

722
    translate_f = [float(t) for t in translate]
723
724
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

725
726
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

727
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
728
729
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
730
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
731
732


733
@_register_kernel_internal(affine, PIL.Image.Image)
734
def _affine_image_pil(
735
    image: PIL.Image.Image,
736
    angle: Union[int, float],
737
738
739
    translate: List[float],
    scale: float,
    shear: List[float],
740
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
741
    fill: _FillTypeJIT = None,
742
743
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
744
    interpolation = _check_interpolation(interpolation)
745
746
747
748
749
750
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
751
        height, width = _get_size_image_pil(image)
752
753
754
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

755
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
756
757


758
759
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
760
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
761
    canvas_size: Tuple[int, int],
762
763
764
765
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
766
    center: Optional[List[float]] = None,
767
    expand: bool = False,
768
) -> Tuple[torch.Tensor, Tuple[int, int]]:
769
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
770
        return bounding_boxes, canvas_size
771
772
773
774
775
776
777

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
Nicolas Hug's avatar
Nicolas Hug committed
778
        convert_bounding_box_format(
779
            bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
780
781
782
        )
    ).reshape(-1, 4)

783
784
785
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
786

787
    if center is None:
Philip Meier's avatar
Philip Meier committed
788
        height, width = canvas_size
789
790
        center = [width * 0.5, height * 0.5]

791
792
793
794
795
796
797
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
798
        .reshape(2, 3)
799
800
        .T
    )
801
802
803
804
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
805
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
806
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
807
    # 2) Now let's transform the points using affine matrix
808
    transformed_points = torch.matmul(points, transposed_affine_matrix)
809
810
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
811
    transformed_points = transformed_points.reshape(-1, 4, 2)
812
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
813
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
814
815
816
817

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
818
        height, width = canvas_size
819
820
821
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
822
823
824
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
825
826
827
828
            ],
            dtype=dtype,
            device=device,
        )
829
        new_points = torch.matmul(points, transposed_affine_matrix)
830
        tr = torch.amin(new_points, dim=0, keepdim=True)
831
        # Translate bounding boxes
832
        out_bboxes.sub_(tr.repeat((1, 2)))
833
834
        # Estimate meta-data for image with inverted=True
        affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
835
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
836
        canvas_size = (new_height, new_width)
837

838
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
Nicolas Hug's avatar
Nicolas Hug committed
839
    out_bboxes = convert_bounding_box_format(
840
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
841
842
843
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
844
    return out_bboxes, canvas_size
845
846


847
848
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
849
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
850
    canvas_size: Tuple[int, int],
851
    angle: Union[int, float],
852
853
854
855
856
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
857
858
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
859
        format=format,
Philip Meier's avatar
Philip Meier committed
860
        canvas_size=canvas_size,
861
862
863
864
865
866
867
868
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
869
870


871
@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
872
def _affine_bounding_boxes_dispatch(
873
    inpt: tv_tensors.BoundingBoxes,
874
875
876
877
878
879
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
880
) -> tv_tensors.BoundingBoxes:
881
882
883
884
885
886
887
888
889
890
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
891
    return tv_tensors.wrap(output, like=inpt)
892
893


894
895
def affine_mask(
    mask: torch.Tensor,
896
    angle: Union[int, float],
897
898
899
    translate: List[float],
    scale: float,
    shear: List[float],
900
    fill: _FillTypeJIT = None,
901
902
    center: Optional[List[float]] = None,
) -> torch.Tensor:
903
904
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
905
906
907
908
        needs_squeeze = True
    else:
        needs_squeeze = False

909
    output = affine_image(
910
        mask,
911
912
913
914
915
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
916
        fill=fill,
917
918
919
        center=center,
    )

920
921
922
923
924
    if needs_squeeze:
        output = output.squeeze(0)

    return output

925

926
@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
927
def _affine_mask_dispatch(
928
    inpt: tv_tensors.Mask,
929
930
931
932
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
933
    fill: _FillTypeJIT = None,
934
935
    center: Optional[List[float]] = None,
    **kwargs,
936
) -> tv_tensors.Mask:
937
938
939
940
941
942
943
944
945
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
946
    return tv_tensors.wrap(output, like=inpt)
947
948


949
@_register_kernel_internal(affine, tv_tensors.Video)
950
951
952
953
954
955
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
956
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
957
    fill: _FillTypeJIT = None,
958
959
    center: Optional[List[float]] = None,
) -> torch.Tensor:
960
    return affine_image(
961
962
963
964
965
966
967
968
969
970
971
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


972
def rotate(
973
    inpt: torch.Tensor,
974
    angle: float,
975
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
976
    expand: bool = False,
977
    center: Optional[List[float]] = None,
978
979
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
980
    """See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
981
    if torch.jit.is_scripting():
982
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
983

984
    _log_api_usage_once(rotate)
985

986
987
988
989
990
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
991
@_register_kernel_internal(rotate, tv_tensors.Image)
992
def rotate_image(
993
    image: torch.Tensor,
994
    angle: float,
995
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
996
997
    expand: bool = False,
    center: Optional[List[float]] = None,
998
    fill: _FillTypeJIT = None,
999
) -> torch.Tensor:
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    angle = angle % 360  # shift angle to [0, 360) range

    # fast path: transpose without affine transform
    if center is None:
        if angle == 0:
            return image.clone()
        if angle == 180:
            return torch.rot90(image, k=2, dims=(-2, -1))

        if expand or image.shape[-1] == image.shape[-2]:
            if angle == 90:
                return torch.rot90(image, k=1, dims=(-2, -1))
            if angle == 270:
                return torch.rot90(image, k=3, dims=(-2, -1))

1015
1016
    interpolation = _check_interpolation(interpolation)

1017
    input_height, input_width = image.shape[-2:]
1018

1019
1020
    center_f = [0.0, 0.0]
    if center is not None:
1021
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1022
        center_f = [(c - s * 0.5) for c, s in zip(center, [input_width, input_height])]
1023
1024
1025
1026

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1027

1028
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])
1029

1030
1031
1032
1033
1034
1035
1036
    output_width, output_height = (
        _compute_affine_output_size(matrix, input_width, input_height) if expand else (input_width, input_height)
    )
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=input_width, h=input_height, ow=output_width, oh=output_height)
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1037
1038


1039
@_register_kernel_internal(rotate, PIL.Image.Image)
1040
def _rotate_image_pil(
1041
    image: PIL.Image.Image,
1042
    angle: float,
1043
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1044
1045
    expand: bool = False,
    center: Optional[List[float]] = None,
1046
    fill: _FillTypeJIT = None,
1047
) -> PIL.Image.Image:
1048
1049
    interpolation = _check_interpolation(interpolation)

1050
    return _FP.rotate(
1051
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1052
1053
1054
    )


1055
1056
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1057
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1058
    canvas_size: Tuple[int, int],
1059
1060
1061
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1062
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1063
1064
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1065
        format=format,
Philip Meier's avatar
Philip Meier committed
1066
        canvas_size=canvas_size,
1067
1068
1069
1070
1071
1072
1073
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1074
1075


1076
@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1077
def _rotate_bounding_boxes_dispatch(
1078
1079
    inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
1080
1081
1082
1083
1084
1085
1086
1087
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
1088
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1089
1090


1091
1092
def rotate_mask(
    mask: torch.Tensor,
1093
1094
1095
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1096
    fill: _FillTypeJIT = None,
1097
) -> torch.Tensor:
1098
1099
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1100
1101
1102
1103
        needs_squeeze = True
    else:
        needs_squeeze = False

1104
    output = rotate_image(
1105
        mask,
1106
1107
1108
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1109
        fill=fill,
1110
1111
1112
        center=center,
    )

1113
1114
1115
1116
1117
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1118

1119
@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
1120
def _rotate_mask_dispatch(
1121
    inpt: tv_tensors.Mask,
1122
1123
1124
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1125
    fill: _FillTypeJIT = None,
1126
    **kwargs,
1127
) -> tv_tensors.Mask:
1128
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
1129
    return tv_tensors.wrap(output, like=inpt)
1130
1131


1132
@_register_kernel_internal(rotate, tv_tensors.Video)
1133
1134
1135
def rotate_video(
    video: torch.Tensor,
    angle: float,
1136
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1137
1138
    expand: bool = False,
    center: Optional[List[float]] = None,
1139
    fill: _FillTypeJIT = None,
1140
) -> torch.Tensor:
1141
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1142
1143


1144
def pad(
1145
    inpt: torch.Tensor,
1146
1147
1148
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1149
) -> torch.Tensor:
1150
    """See :class:`~torchvision.transforms.v2.Pad` for details."""
1151
    if torch.jit.is_scripting():
1152
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1153

1154
    _log_api_usage_once(pad)
1155

1156
1157
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1158
1159


1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1182

1183

1184
@_register_kernel_internal(pad, torch.Tensor)
1185
@_register_kernel_internal(pad, tv_tensors.Image)
1186
def pad_image(
1187
    image: torch.Tensor,
1188
1189
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1190
1191
    padding_mode: str = "constant",
) -> torch.Tensor:
1192
    # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
1193
1194
1195
1196
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1197
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1198
1199
1200
1201
1202
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1203
    if fill is None:
1204
1205
1206
1207
1208
1209
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1210
    else:
1211
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1212
1213
1214


def _pad_with_scalar_fill(
1215
    image: torch.Tensor,
1216
1217
1218
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1219
) -> torch.Tensor:
1220
1221
    shape = image.shape
    num_channels, height, width = shape[-3:]
1222

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1246

1247
1248
1249
1250
1251
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1252
        image = _pad_symmetric(image, torch_padding)
1253
1254

    new_height, new_width = image.shape[-2:]
1255

1256
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1257
1258


1259
# TODO: This should be removed once torch_pad supports non-scalar padding values
1260
def _pad_with_vector_fill(
1261
    image: torch.Tensor,
1262
    torch_padding: List[int],
1263
    fill: List[float],
1264
    padding_mode: str,
1265
1266
1267
1268
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1269
1270
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1271
1272
1273
1274
1275

    # We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
    # float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
    # value.
    fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1288
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1289
1290


1291
@_register_kernel_internal(pad, tv_tensors.Mask)
1292
1293
def pad_mask(
    mask: torch.Tensor,
1294
1295
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1296
1297
    padding_mode: str = "constant",
) -> torch.Tensor:
1298
1299
1300
    if fill is None:
        fill = 0

1301
    if isinstance(fill, (tuple, list)):
1302
1303
        raise ValueError("Non-scalar fill value is not supported")

1304
1305
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1306
1307
1308
1309
        needs_squeeze = True
    else:
        needs_squeeze = False

1310
    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1311
1312
1313
1314
1315

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1316
1317


1318
1319
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1320
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1321
    canvas_size: Tuple[int, int],
1322
    padding: List[int],
vfdev's avatar
vfdev committed
1323
    padding_mode: str = "constant",
1324
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1325
1326
1327
1328
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1329
    left, right, top, bottom = _parse_pad_padding(padding)
1330

1331
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1332
1333
1334
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1335
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1336

Philip Meier's avatar
Philip Meier committed
1337
    height, width = canvas_size
1338
1339
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1340
    canvas_size = (height, width)
1341

Philip Meier's avatar
Philip Meier committed
1342
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1343
1344


1345
@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1346
def _pad_bounding_boxes_dispatch(
1347
1348
    inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
1349
1350
1351
1352
1353
1354
1355
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
1356
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1357
1358


1359
@_register_kernel_internal(pad, tv_tensors.Video)
1360
1361
def pad_video(
    video: torch.Tensor,
1362
1363
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1364
1365
    padding_mode: str = "constant",
) -> torch.Tensor:
1366
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
1367
1368


1369
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1370
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1371
    if torch.jit.is_scripting():
1372
        return crop_image(inpt, top=top, left=left, height=height, width=width)
1373
1374

    _log_api_usage_once(crop)
1375

1376
1377
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1378

1379
1380

@_register_kernel_internal(crop, torch.Tensor)
1381
@_register_kernel_internal(crop, tv_tensors.Image)
1382
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1400
1401
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
1402
1403


1404
1405
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1406
    format: tv_tensors.BoundingBoxFormat,
1407
1408
    top: int,
    left: int,
1409
1410
1411
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1412

1413
    # Crop or implicit pad if left and/or top have negative values:
1414
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1415
        sub = [left, top, left, top]
1416
    else:
1417
1418
        sub = [left, top, 0, 0]

1419
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1420
    canvas_size = (height, width)
1421

Philip Meier's avatar
Philip Meier committed
1422
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1423
1424


1425
@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1426
def _crop_bounding_boxes_dispatch(
1427
1428
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
1429
1430
1431
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
1432
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1433
1434


1435
@_register_kernel_internal(crop, tv_tensors.Mask)
1436
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1437
1438
1439
1440
1441
1442
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

1443
    output = crop_image(mask, top, left, height, width)
1444
1445
1446
1447
1448

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1449
1450


1451
@_register_kernel_internal(crop, tv_tensors.Video)
1452
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1453
    return crop_image(video, top, left, height, width)
1454
1455


1456
def perspective(
1457
    inpt: torch.Tensor,
1458
1459
1460
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1461
    fill: _FillTypeJIT = None,
1462
    coefficients: Optional[List[float]] = None,
1463
) -> torch.Tensor:
1464
    """See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
1465
    if torch.jit.is_scripting():
1466
        return perspective_image(
1467
1468
1469
1470
1471
1472
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1473
        )
1474

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1487

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1503
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1504
    base_grid[..., 0].copy_(x_grid)
1505
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1506
1507
1508
1509
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1510
1511
1512
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1513
1514
1515
1516
1517

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1535
@_register_kernel_internal(perspective, torch.Tensor)
1536
@_register_kernel_internal(perspective, tv_tensors.Image)
1537
def perspective_image(
1538
    image: torch.Tensor,
1539
1540
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1541
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1542
    fill: _FillTypeJIT = None,
1543
    coefficients: Optional[List[float]] = None,
1544
) -> torch.Tensor:
1545
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1546
1547
    interpolation = _check_interpolation(interpolation)

1548
    _assert_grid_transform_inputs(
1549
1550
1551
1552
1553
1554
1555
1556
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1557
    oh, ow = image.shape[-2:]
1558
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1559
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1560
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1561
1562


1563
@_register_kernel_internal(perspective, PIL.Image.Image)
1564
def _perspective_image_pil(
1565
    image: PIL.Image.Image,
1566
1567
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1568
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1569
    fill: _FillTypeJIT = None,
1570
    coefficients: Optional[List[float]] = None,
1571
) -> PIL.Image.Image:
1572
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1573
    interpolation = _check_interpolation(interpolation)
1574
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1575
1576


1577
1578
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1579
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1580
    canvas_size: Tuple[int, int],
1581
1582
1583
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1584
) -> torch.Tensor:
1585
1586
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1587

1588
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1589

1590
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1591
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1592
    bounding_boxes = (
1593
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1594
    ).reshape(-1, 4)
1595

1596
1597
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1629
1630
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1631
1632
1633
1634
        dtype=dtype,
        device=device,
    )

1635
1636
1637
1638
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1639
1640
1641
1642
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1643
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1644
1645
1646
1647
1648
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1649
1650
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1651
    transformed_points = numer_points.div_(denom_points)
1652
1653
1654

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1655
    transformed_points = transformed_points.reshape(-1, 4, 2)
1656
1657
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1658
1659
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1660
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1661
        canvas_size=canvas_size,
1662
    )
1663
1664
1665

    # out_bboxes should be of shape [N boxes, 4]

Nicolas Hug's avatar
Nicolas Hug committed
1666
    return convert_bounding_box_format(
1667
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1668
    ).reshape(original_shape)
1669
1670


1671
@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1672
def _perspective_bounding_boxes_dispatch(
1673
    inpt: tv_tensors.BoundingBoxes,
1674
1675
1676
1677
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
1678
) -> tv_tensors.BoundingBoxes:
1679
1680
1681
1682
1683
1684
1685
1686
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
1687
    return tv_tensors.wrap(output, like=inpt)
1688
1689


1690
1691
def perspective_mask(
    mask: torch.Tensor,
1692
1693
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1694
    fill: _FillTypeJIT = None,
1695
    coefficients: Optional[List[float]] = None,
1696
) -> torch.Tensor:
1697
1698
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1699
1700
1701
1702
        needs_squeeze = True
    else:
        needs_squeeze = False

1703
    output = perspective_image(
1704
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1705
    )
1706

1707
1708
1709
1710
1711
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1712

1713
@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
1714
def _perspective_mask_dispatch(
1715
    inpt: tv_tensors.Mask,
1716
1717
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1718
    fill: _FillTypeJIT = None,
1719
1720
    coefficients: Optional[List[float]] = None,
    **kwargs,
1721
) -> tv_tensors.Mask:
1722
1723
1724
1725
1726
1727
1728
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
1729
    return tv_tensors.wrap(output, like=inpt)
1730
1731


1732
@_register_kernel_internal(perspective, tv_tensors.Video)
1733
1734
def perspective_video(
    video: torch.Tensor,
1735
1736
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1737
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1738
    fill: _FillTypeJIT = None,
1739
    coefficients: Optional[List[float]] = None,
1740
) -> torch.Tensor:
1741
    return perspective_image(
1742
1743
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1744
1745


1746
def elastic(
1747
    inpt: torch.Tensor,
1748
    displacement: torch.Tensor,
1749
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1750
1751
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
1752
    """See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
1753
    if torch.jit.is_scripting():
1754
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1755
1756
1757
1758
1759

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1760
1761


1762
1763
1764
elastic_transform = elastic


1765
@_register_kernel_internal(elastic, torch.Tensor)
1766
@_register_kernel_internal(elastic, tv_tensors.Image)
1767
def elastic_image(
1768
    image: torch.Tensor,
1769
    displacement: torch.Tensor,
1770
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1771
    fill: _FillTypeJIT = None,
1772
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1773
1774
1775
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1776
1777
    interpolation = _check_interpolation(interpolation)

1778
    height, width = image.shape[-2:]
1779
    device = image.device
1780
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1781
1782
1783
1784
1785
1786
1787

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1788
    # We are aware that if input image dtype is uint8 and displacement is float64 then
1789
    # displacement will be cast to float32 and all computations will be done with float32
1790
    # We can fix this later if needed
1791

1792
    expected_shape = (1, height, width, 2)
1793
1794
1795
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1796
1797
1798
    grid = _create_identity_grid((height, width), device=device, dtype=dtype).add_(
        displacement.to(dtype=dtype, device=device)
    )
1799
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1800

1801
1802
1803
    if is_cpu_half:
        output = output.to(torch.float16)

1804
    return output
1805
1806


1807
@_register_kernel_internal(elastic, PIL.Image.Image)
1808
def _elastic_image_pil(
1809
    image: PIL.Image.Image,
1810
    displacement: torch.Tensor,
1811
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1812
    fill: _FillTypeJIT = None,
1813
) -> PIL.Image.Image:
1814
    t_img = pil_to_tensor(image)
1815
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
1816
    return to_pil_image(output, mode=image.mode)
1817
1818


1819
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1820
    sy, sx = size
1821
1822
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1823
1824
    base_grid[..., 0].copy_(x_grid)

1825
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1826
1827
1828
1829
1830
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1831
1832
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1833
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1834
    canvas_size: Tuple[int, int],
1835
1836
    displacement: torch.Tensor,
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1837
1838
1839
1840
1841
1842
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1843
1844
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1845

1846
    # TODO: add in docstring about approximation we are doing for grid inversion
1847
1848
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1849
1850
1851

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1852

1853
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1854
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1855
    bounding_boxes = (
1856
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1857
    ).reshape(-1, 4)
1858

Philip Meier's avatar
Philip Meier committed
1859
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1860
1861
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1862
    inv_grid = id_grid.sub_(displacement)
1863
1864

    # Get points from bboxes
1865
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1866
1867
1868
1869
1870
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1871
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1872
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1873
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1874

1875
    transformed_points = transformed_points.reshape(-1, 4, 2)
1876
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1877
1878
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1879
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1880
        canvas_size=canvas_size,
1881
    )
1882

Nicolas Hug's avatar
Nicolas Hug committed
1883
    return convert_bounding_box_format(
1884
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1885
    ).reshape(original_shape)
1886
1887


1888
@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1889
def _elastic_bounding_boxes_dispatch(
1890
1891
    inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
1892
1893
1894
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
1895
    return tv_tensors.wrap(output, like=inpt)
1896
1897


1898
1899
1900
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1901
    fill: _FillTypeJIT = None,
1902
) -> torch.Tensor:
1903
1904
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1905
1906
1907
1908
        needs_squeeze = True
    else:
        needs_squeeze = False

1909
    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1910
1911
1912
1913
1914

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1915
1916


1917
@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
1918
def _elastic_mask_dispatch(
1919
1920
    inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
1921
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
1922
    return tv_tensors.wrap(output, like=inpt)
1923
1924


1925
@_register_kernel_internal(elastic, tv_tensors.Video)
1926
1927
1928
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1929
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1930
    fill: _FillTypeJIT = None,
1931
) -> torch.Tensor:
1932
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
1933
1934


1935
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1936
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1937
    if torch.jit.is_scripting():
1938
        return center_crop_image(inpt, output_size=output_size)
1939
1940
1941
1942
1943

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1944
1945


1946
1947
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1948
1949
        s = int(output_size)
        return [s, s]
1950
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1951
        return [output_size[0], output_size[0]]
1952
1953
    else:
        return list(output_size)
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1973
@_register_kernel_internal(center_crop, torch.Tensor)
1974
@_register_kernel_internal(center_crop, tv_tensors.Image)
1975
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1976
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1977
1978
1979
1980
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1981
1982
1983

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1984
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1985

1986
        image_height, image_width = image.shape[-2:]
1987
        if crop_width == image_width and crop_height == image_height:
1988
            return image
1989
1990

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1991
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1992
1993


1994
@_register_kernel_internal(center_crop, PIL.Image.Image)
1995
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1996
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1997
    image_height, image_width = _get_size_image_pil(image)
1998
1999
2000

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
2001
        image = _pad_image_pil(image, padding_ltrb, fill=0)
2002

2003
        image_height, image_width = _get_size_image_pil(image)
2004
        if crop_width == image_width and crop_height == image_height:
2005
            return image
2006
2007

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2008
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2009
2010


2011
2012
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2013
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2014
    canvas_size: Tuple[int, int],
2015
    output_size: List[int],
2016
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2017
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2018
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2019
2020
2021
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2022
2023


2024
@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2025
def _center_crop_bounding_boxes_dispatch(
2026
2027
    inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
2028
2029
2030
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
2031
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2032
2033


2034
@_register_kernel_internal(center_crop, tv_tensors.Mask)
2035
2036
2037
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2038
2039
2040
2041
        needs_squeeze = True
    else:
        needs_squeeze = False

2042
    output = center_crop_image(image=mask, output_size=output_size)
2043
2044
2045
2046
2047

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2048
2049


2050
@_register_kernel_internal(center_crop, tv_tensors.Video)
2051
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
2052
    return center_crop_image(video, output_size)
2053
2054


2055
def resized_crop(
2056
    inpt: torch.Tensor,
2057
2058
2059
2060
2061
2062
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2063
    antialias: Optional[bool] = True,
2064
) -> torch.Tensor:
2065
    """See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
2066
    if torch.jit.is_scripting():
2067
        return resized_crop_image(
2068
2069
2070
2071
2072
2073
2074
2075
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2076
        )
2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2091

2092
2093

@_register_kernel_internal(resized_crop, torch.Tensor)
2094
@_register_kernel_internal(resized_crop, tv_tensors.Image)
2095
def resized_crop_image(
2096
    image: torch.Tensor,
2097
2098
2099
2100
2101
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2102
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2103
    antialias: Optional[bool] = True,
2104
) -> torch.Tensor:
2105
2106
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)
2107
2108


2109
def _resized_crop_image_pil(
2110
    image: PIL.Image.Image,
2111
2112
2113
2114
2115
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2116
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2117
) -> PIL.Image.Image:
2118
2119
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)
2120
2121


2122
@_register_kernel_internal(resized_crop, PIL.Image.Image)
2123
def _resized_crop_image_pil_dispatch(
2124
2125
2126
2127
2128
2129
2130
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2131
    antialias: Optional[bool] = True,
2132
2133
2134
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
2135
    return _resized_crop_image_pil(
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2146
2147
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2148
    format: tv_tensors.BoundingBoxFormat,
2149
2150
2151
2152
2153
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2154
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2155
2156
2157
2158
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


2159
@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2160
def _resized_crop_bounding_boxes_dispatch(
2161
2162
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
2163
2164
2165
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
2166
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2167
2168


2169
def resized_crop_mask(
2170
2171
2172
2173
2174
2175
2176
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2177
2178
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2179
2180


2181
@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
2182
def _resized_crop_mask_dispatch(
2183
2184
    inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
2185
2186
2187
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
2188
    return tv_tensors.wrap(output, like=inpt)
2189
2190


2191
@_register_kernel_internal(resized_crop, tv_tensors.Video)
2192
2193
2194
2195
2196
2197
2198
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2199
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2200
    antialias: Optional[bool] = True,
2201
) -> torch.Tensor:
2202
    return resized_crop_image(
2203
2204
2205
2206
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2207
def five_crop(
2208
2209
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2210
    """See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
2211
    if torch.jit.is_scripting():
2212
        return five_crop_image(inpt, size=size)
2213
2214
2215
2216
2217

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2218
2219


2220
2221
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2222
2223
        s = int(size)
        size = [s, s]
2224
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2225
2226
        s = size[0]
        size = [s, s]
2227
2228
2229
2230
2231
2232
2233

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2234
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
2235
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
2236
def five_crop_image(
2237
    image: torch.Tensor, size: List[int]
2238
2239
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2240
    image_height, image_width = image.shape[-2:]
2241
2242

    if crop_width > image_width or crop_height > image_height:
2243
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2244

2245
2246
2247
2248
2249
    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])
2250
2251
2252
2253

    return tl, tr, bl, br, center


2254
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2255
def _five_crop_image_pil(
2256
    image: PIL.Image.Image, size: List[int]
2257
2258
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
2259
    image_height, image_width = _get_size_image_pil(image)
2260
2261

    if crop_width > image_width or crop_height > image_height:
2262
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2263

2264
2265
2266
2267
2268
    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])
2269
2270
2271
2272

    return tl, tr, bl, br, center


2273
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
2274
2275
2276
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2277
    return five_crop_image(video, size)
2278
2279


2280
def ten_crop(
2281
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2282
) -> Tuple[
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2293
]:
2294
    """See :class:`~torchvision.transforms.v2.TenCrop` for details."""
2295
    if torch.jit.is_scripting():
2296
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
2297
2298
2299
2300
2301

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2302
2303


2304
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
2305
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
2306
def ten_crop_image(
Philip Meier's avatar
Philip Meier committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2320
    non_flipped = five_crop_image(image, size)
2321
2322

    if vertical_flip:
2323
        image = vertical_flip_image(image)
2324
    else:
2325
        image = horizontal_flip_image(image)
2326

2327
    flipped = five_crop_image(image, size)
2328

Philip Meier's avatar
Philip Meier committed
2329
    return non_flipped + flipped
2330
2331


2332
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
2333
def _ten_crop_image_pil(
Philip Meier's avatar
Philip Meier committed
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
2347
    non_flipped = _five_crop_image_pil(image, size)
2348
2349

    if vertical_flip:
2350
        image = _vertical_flip_image_pil(image)
2351
    else:
2352
        image = _horizontal_flip_image_pil(image)
2353

2354
    flipped = _five_crop_image_pil(image, size)
Philip Meier's avatar
Philip Meier committed
2355
2356
2357
2358

    return non_flipped + flipped


2359
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
Philip Meier's avatar
Philip Meier committed
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2374
    return ten_crop_image(video, size, vertical_flip=vertical_flip)