_geometry.py 83.7 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import tv_tensors
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _compute_resized_output_size as __compute_resized_output_size,
15
    _get_perspective_coeffs,
16
    _interpolation_modes_from_int,
17
    InterpolationMode,
18
    pil_modes_mapping,
19
20
    pil_to_tensor,
    to_pil_image,
21
)
22

23
24
from torchvision.utils import _log_api_usage_once

Nicolas Hug's avatar
Nicolas Hug committed
25
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format
26

27
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
28

29

30
31
32
33
34
35
36
37
38
39
40
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


41
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
42
    """See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
54
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
55
56
57
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
60
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
64
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
65
    return horizontal_flip_image(mask)
66
67


68
def horizontal_flip_bounding_boxes(
69
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
87
88
89
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
90
    return tv_tensors.wrap(output, like=inpt)
91
92


93
@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
94
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
95
    return horizontal_flip_image(video)
96
97


98
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
99
    """See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
100
    if torch.jit.is_scripting():
101
        return vertical_flip_image(inpt)
102
103
104
105
106

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
107
108


109
@_register_kernel_internal(vertical_flip, torch.Tensor)
110
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
111
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
112
113
114
    return image.flip(-2)


115
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
116
def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
Philip Meier's avatar
Philip Meier committed
117
    return _FP.vflip(image)
118
119


120
@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
121
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
122
    return vertical_flip_image(mask)
123
124


125
def vertical_flip_bounding_boxes(
126
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
127
) -> torch.Tensor:
128
    shape = bounding_boxes.shape
129

130
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
131

132
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
133
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
134
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
135
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
136
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
137
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
138

139
    return bounding_boxes.reshape(shape)
140
141


142
143
@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
144
145
146
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
147
    return tv_tensors.wrap(output, like=inpt)
148

149

150
@_register_kernel_internal(vertical_flip, tv_tensors.Video)
151
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
152
    return vertical_flip_image(video)
153
154


155
156
157
158
159
160
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


161
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
162
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
163
164
165
) -> List[int]:
    if isinstance(size, int):
        size = [size]
166
167
168
169
170
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
171
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
172
173


174
def resize(
175
    inpt: torch.Tensor,
176
177
178
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
179
    antialias: Optional[bool] = True,
180
) -> torch.Tensor:
181
    """See :class:`~torchvision.transforms.v2.Resize` for details."""
182
    if torch.jit.is_scripting():
183
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
184
185
186
187
188

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
189
190


191
192
193
194
195
196
197
198
199
200
201
202
203
204
# This is an internal helper method for resize_image. We should put it here instead of keeping it
# inside resize_image due to torchscript.
# uint8 dtype support for bilinear and bicubic is limited to cpu and
# according to our benchmarks on eager, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
def _do_native_uint8_resize_on_cpu(interpolation: InterpolationMode) -> bool:
    if interpolation == InterpolationMode.BILINEAR:
        if torch._dynamo.is_compiling():
            return True
        else:
            return "AVX2" in torch.backends.cpu.get_cpu_capability()

    return interpolation == InterpolationMode.BICUBIC


205
@_register_kernel_internal(resize, torch.Tensor)
206
@_register_kernel_internal(resize, tv_tensors.Image)
207
def resize_image(
208
209
    image: torch.Tensor,
    size: List[int],
210
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
211
    max_size: Optional[int] = None,
212
    antialias: Optional[bool] = True,
213
) -> torch.Tensor:
214
    interpolation = _check_interpolation(interpolation)
215
    antialias = False if antialias is None else antialias
216
217
218
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
219
    else:
220
        # The default of antialias is True from 0.17, so we don't warn or
221
222
        # error if other interpolation modes are used. This is documented.
        antialias = False
223

224
    shape = image.shape
225
    numel = image.numel()
226
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
227
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
228

229
230
    if (new_height, new_width) == (old_height, old_width):
        return image
231
    elif numel > 0:
232
        dtype = image.dtype
233
234
235
236
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
237
        elif image.device.type == "cpu":
238
            if _do_native_uint8_resize_on_cpu(interpolation):
239
                acceptable_dtypes.append(torch.uint8)
240

241
        image = image.reshape(-1, num_channels, old_height, old_width)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
257
258
259
260
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
261
262
            image,
            size=[new_height, new_width],
263
264
            mode=interpolation.value,
            align_corners=align_corners,
265
266
            antialias=antialias,
        )
267

268
269
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
270
                # This path is hit on non-AVX archs, or on GPU.
271
                image = image.clamp_(min=0, max=255)
272
273
274
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
275

276
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
277
278


279
def _resize_image_pil(
280
    image: PIL.Image.Image,
281
    size: Union[Sequence[int], int],
282
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
283
284
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
285
286
287
288
289
290
291
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

292
    interpolation = _check_interpolation(interpolation)
293
294
295
296
297

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
298
299


300
@_register_kernel_internal(resize, PIL.Image.Image)
301
def __resize_image_pil_dispatch(
302
303
304
305
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
306
    antialias: Optional[bool] = True,
307
308
309
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
310
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
311
312


313
314
315
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
316
317
318
319
        needs_squeeze = True
    else:
        needs_squeeze = False

320
    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
321
322
323
324
325

    if needs_squeeze:
        output = output.squeeze(0)

    return output
326
327


328
@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
329
def _resize_mask_dispatch(
330
331
    inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
332
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
333
    return tv_tensors.wrap(output, like=inpt)
334
335


336
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
337
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
338
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
339
340
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
341
342

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
343
        return bounding_boxes, canvas_size
344

345
346
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
347
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
348
    return (
349
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
350
351
        (new_height, new_width),
    )
352
353


354
@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
355
def _resize_bounding_boxes_dispatch(
356
357
    inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
358
359
360
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
361
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
362
363


364
@_register_kernel_internal(resize, tv_tensors.Video)
365
366
367
def resize_video(
    video: torch.Tensor,
    size: List[int],
368
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
369
    max_size: Optional[int] = None,
370
    antialias: Optional[bool] = True,
371
) -> torch.Tensor:
372
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
373
374


375
def affine(
376
    inpt: torch.Tensor,
377
378
379
380
381
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
382
    fill: _FillTypeJIT = None,
383
    center: Optional[List[float]] = None,
384
) -> torch.Tensor:
385
    """See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
386
    if torch.jit.is_scripting():
387
        return affine_image(
388
            inpt,
389
            angle=angle,
390
391
392
393
394
395
396
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
411
412


413
def _affine_parse_args(
414
    angle: Union[int, float],
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

457
458
459
460
461
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
462
463
464
465

    return angle, translate, shear, center


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


562
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
563
564
565
566
567
568
569
570
571
572
    input_shape = img.shape
    output_height, output_width = grid.shape[1], grid.shape[2]
    num_channels, input_height, input_width = input_shape[-3:]
    output_shape = input_shape[:-3] + (num_channels, output_height, output_width)

    if img.numel() == 0:
        return img.reshape(output_shape)

    img = img.reshape(-1, num_channels, input_height, input_width)
    squashed_batch_size = img.shape[0]
573

574
575
576
577
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

578
    if squashed_batch_size > 1:
579
        # Apply same grid to a batch of images
580
        grid = grid.expand(squashed_batch_size, -1, -1, -1)
581
582
583

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
584
585
586
        mask = torch.ones(
            (squashed_batch_size, 1, input_height, input_width), dtype=float_img.dtype, device=float_img.device
        )
587
588
589
590
591
592
593
594
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
595
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
596
597
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
598
            float_img = torch.where(mask < 0.5, fill_img.expand_as(float_img), float_img)
599
600
601
602
603
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

604
605
    img = float_img.round_().to(img.dtype) if not fp else float_img

606
    return img.reshape(output_shape)
607
608
609
610
611
612


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
613
    fill: _FillTypeJIT,
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


669
@_register_kernel_internal(affine, torch.Tensor)
670
@_register_kernel_internal(affine, tv_tensors.Image)
671
def affine_image(
672
    image: torch.Tensor,
673
    angle: Union[int, float],
674
675
676
    translate: List[float],
    scale: float,
    shear: List[float],
677
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
678
    fill: _FillTypeJIT = None,
679
680
    center: Optional[List[float]] = None,
) -> torch.Tensor:
681
682
    interpolation = _check_interpolation(interpolation)

683
684
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

685
686
    height, width = image.shape[-2:]

687
688
689
    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
690
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
691

692
    translate_f = [float(t) for t in translate]
693
694
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

695
696
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

697
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
698
699
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
700
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
701
702


703
@_register_kernel_internal(affine, PIL.Image.Image)
704
def _affine_image_pil(
705
    image: PIL.Image.Image,
706
    angle: Union[int, float],
707
708
709
    translate: List[float],
    scale: float,
    shear: List[float],
710
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
711
    fill: _FillTypeJIT = None,
712
713
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
714
    interpolation = _check_interpolation(interpolation)
715
716
717
718
719
720
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
721
        height, width = _get_size_image_pil(image)
722
723
724
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

725
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
726
727


728
729
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
730
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
731
    canvas_size: Tuple[int, int],
732
733
734
735
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
736
    center: Optional[List[float]] = None,
737
    expand: bool = False,
738
) -> Tuple[torch.Tensor, Tuple[int, int]]:
739
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
740
        return bounding_boxes, canvas_size
741
742
743
744
745
746
747

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
Nicolas Hug's avatar
Nicolas Hug committed
748
        convert_bounding_box_format(
749
            bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
750
751
752
        )
    ).reshape(-1, 4)

753
754
755
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
756

757
    if center is None:
Philip Meier's avatar
Philip Meier committed
758
        height, width = canvas_size
759
760
        center = [width * 0.5, height * 0.5]

761
762
763
764
765
766
767
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
768
        .reshape(2, 3)
769
770
        .T
    )
771
772
773
774
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
775
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
776
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
777
    # 2) Now let's transform the points using affine matrix
778
    transformed_points = torch.matmul(points, transposed_affine_matrix)
779
780
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
781
    transformed_points = transformed_points.reshape(-1, 4, 2)
782
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
783
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
784
785
786
787

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
788
        height, width = canvas_size
789
790
791
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
792
793
794
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
795
796
797
798
            ],
            dtype=dtype,
            device=device,
        )
799
        new_points = torch.matmul(points, transposed_affine_matrix)
800
        tr = torch.amin(new_points, dim=0, keepdim=True)
801
        # Translate bounding boxes
802
        out_bboxes.sub_(tr.repeat((1, 2)))
803
804
        # Estimate meta-data for image with inverted=True
        affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
805
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
806
        canvas_size = (new_height, new_width)
807

808
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
Nicolas Hug's avatar
Nicolas Hug committed
809
    out_bboxes = convert_bounding_box_format(
810
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
811
812
813
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
814
    return out_bboxes, canvas_size
815
816


817
818
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
819
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
820
    canvas_size: Tuple[int, int],
821
    angle: Union[int, float],
822
823
824
825
826
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
827
828
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
829
        format=format,
Philip Meier's avatar
Philip Meier committed
830
        canvas_size=canvas_size,
831
832
833
834
835
836
837
838
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
839
840


841
@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
842
def _affine_bounding_boxes_dispatch(
843
    inpt: tv_tensors.BoundingBoxes,
844
845
846
847
848
849
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
850
) -> tv_tensors.BoundingBoxes:
851
852
853
854
855
856
857
858
859
860
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
861
    return tv_tensors.wrap(output, like=inpt)
862
863


864
865
def affine_mask(
    mask: torch.Tensor,
866
    angle: Union[int, float],
867
868
869
    translate: List[float],
    scale: float,
    shear: List[float],
870
    fill: _FillTypeJIT = None,
871
872
    center: Optional[List[float]] = None,
) -> torch.Tensor:
873
874
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
875
876
877
878
        needs_squeeze = True
    else:
        needs_squeeze = False

879
    output = affine_image(
880
        mask,
881
882
883
884
885
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
886
        fill=fill,
887
888
889
        center=center,
    )

890
891
892
893
894
    if needs_squeeze:
        output = output.squeeze(0)

    return output

895

896
@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
897
def _affine_mask_dispatch(
898
    inpt: tv_tensors.Mask,
899
900
901
902
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
903
    fill: _FillTypeJIT = None,
904
905
    center: Optional[List[float]] = None,
    **kwargs,
906
) -> tv_tensors.Mask:
907
908
909
910
911
912
913
914
915
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
916
    return tv_tensors.wrap(output, like=inpt)
917
918


919
@_register_kernel_internal(affine, tv_tensors.Video)
920
921
922
923
924
925
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
926
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
927
    fill: _FillTypeJIT = None,
928
929
    center: Optional[List[float]] = None,
) -> torch.Tensor:
930
    return affine_image(
931
932
933
934
935
936
937
938
939
940
941
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


942
def rotate(
943
    inpt: torch.Tensor,
944
    angle: float,
945
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
946
    expand: bool = False,
947
    center: Optional[List[float]] = None,
948
949
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
950
    """See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
951
    if torch.jit.is_scripting():
952
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
953

954
    _log_api_usage_once(rotate)
955

956
957
958
959
960
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
961
@_register_kernel_internal(rotate, tv_tensors.Image)
962
def rotate_image(
963
    image: torch.Tensor,
964
    angle: float,
965
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
966
967
    expand: bool = False,
    center: Optional[List[float]] = None,
968
    fill: _FillTypeJIT = None,
969
) -> torch.Tensor:
970
971
    interpolation = _check_interpolation(interpolation)

972
    input_height, input_width = image.shape[-2:]
973

974
975
    center_f = [0.0, 0.0]
    if center is not None:
976
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
977
        center_f = [(c - s * 0.5) for c, s in zip(center, [input_width, input_height])]
978
979
980
981

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
982

983
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])
984

985
986
987
988
989
990
991
    output_width, output_height = (
        _compute_affine_output_size(matrix, input_width, input_height) if expand else (input_width, input_height)
    )
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=input_width, h=input_height, ow=output_width, oh=output_height)
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
992
993


994
@_register_kernel_internal(rotate, PIL.Image.Image)
995
def _rotate_image_pil(
996
    image: PIL.Image.Image,
997
    angle: float,
998
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
999
1000
    expand: bool = False,
    center: Optional[List[float]] = None,
1001
    fill: _FillTypeJIT = None,
1002
) -> PIL.Image.Image:
1003
1004
    interpolation = _check_interpolation(interpolation)

1005
    return _FP.rotate(
1006
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1007
1008
1009
    )


1010
1011
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1012
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1013
    canvas_size: Tuple[int, int],
1014
1015
1016
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1017
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1018
1019
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1020
        format=format,
Philip Meier's avatar
Philip Meier committed
1021
        canvas_size=canvas_size,
1022
1023
1024
1025
1026
1027
1028
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1029
1030


1031
@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1032
def _rotate_bounding_boxes_dispatch(
1033
1034
    inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
1035
1036
1037
1038
1039
1040
1041
1042
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
1043
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1044
1045


1046
1047
def rotate_mask(
    mask: torch.Tensor,
1048
1049
1050
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1051
    fill: _FillTypeJIT = None,
1052
) -> torch.Tensor:
1053
1054
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1055
1056
1057
1058
        needs_squeeze = True
    else:
        needs_squeeze = False

1059
    output = rotate_image(
1060
        mask,
1061
1062
1063
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1064
        fill=fill,
1065
1066
1067
        center=center,
    )

1068
1069
1070
1071
1072
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1073

1074
@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
1075
def _rotate_mask_dispatch(
1076
    inpt: tv_tensors.Mask,
1077
1078
1079
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1080
    fill: _FillTypeJIT = None,
1081
    **kwargs,
1082
) -> tv_tensors.Mask:
1083
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
1084
    return tv_tensors.wrap(output, like=inpt)
1085
1086


1087
@_register_kernel_internal(rotate, tv_tensors.Video)
1088
1089
1090
def rotate_video(
    video: torch.Tensor,
    angle: float,
1091
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1092
1093
    expand: bool = False,
    center: Optional[List[float]] = None,
1094
    fill: _FillTypeJIT = None,
1095
) -> torch.Tensor:
1096
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1097
1098


1099
def pad(
1100
    inpt: torch.Tensor,
1101
1102
1103
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1104
) -> torch.Tensor:
1105
    """See :class:`~torchvision.transforms.v2.Pad` for details."""
1106
    if torch.jit.is_scripting():
1107
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1108

1109
    _log_api_usage_once(pad)
1110

1111
1112
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1113
1114


1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1137

1138

1139
@_register_kernel_internal(pad, torch.Tensor)
1140
@_register_kernel_internal(pad, tv_tensors.Image)
1141
def pad_image(
1142
    image: torch.Tensor,
1143
1144
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1145
1146
    padding_mode: str = "constant",
) -> torch.Tensor:
1147
    # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
1148
1149
1150
1151
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1152
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1153
1154
1155
1156
1157
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1158
    if fill is None:
1159
1160
1161
1162
1163
1164
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1165
    else:
1166
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1167
1168
1169


def _pad_with_scalar_fill(
1170
    image: torch.Tensor,
1171
1172
1173
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1174
) -> torch.Tensor:
1175
1176
    shape = image.shape
    num_channels, height, width = shape[-3:]
1177

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1201

1202
1203
1204
1205
1206
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1207
        image = _pad_symmetric(image, torch_padding)
1208
1209

    new_height, new_width = image.shape[-2:]
1210

1211
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1212
1213


1214
# TODO: This should be removed once torch_pad supports non-scalar padding values
1215
def _pad_with_vector_fill(
1216
    image: torch.Tensor,
1217
    torch_padding: List[int],
1218
    fill: List[float],
1219
    padding_mode: str,
1220
1221
1222
1223
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1224
1225
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1226
1227
1228
1229
1230

    # We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
    # float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
    # value.
    fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1243
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1244
1245


1246
@_register_kernel_internal(pad, tv_tensors.Mask)
1247
1248
def pad_mask(
    mask: torch.Tensor,
1249
1250
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1251
1252
    padding_mode: str = "constant",
) -> torch.Tensor:
1253
1254
1255
    if fill is None:
        fill = 0

1256
    if isinstance(fill, (tuple, list)):
1257
1258
        raise ValueError("Non-scalar fill value is not supported")

1259
1260
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1261
1262
1263
1264
        needs_squeeze = True
    else:
        needs_squeeze = False

1265
    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1266
1267
1268
1269
1270

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1271
1272


1273
1274
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1275
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1276
    canvas_size: Tuple[int, int],
1277
    padding: List[int],
vfdev's avatar
vfdev committed
1278
    padding_mode: str = "constant",
1279
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1280
1281
1282
1283
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1284
    left, right, top, bottom = _parse_pad_padding(padding)
1285

1286
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1287
1288
1289
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1290
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1291

Philip Meier's avatar
Philip Meier committed
1292
    height, width = canvas_size
1293
1294
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1295
    canvas_size = (height, width)
1296

Philip Meier's avatar
Philip Meier committed
1297
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1298
1299


1300
@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1301
def _pad_bounding_boxes_dispatch(
1302
1303
    inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
1304
1305
1306
1307
1308
1309
1310
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
1311
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1312
1313


1314
@_register_kernel_internal(pad, tv_tensors.Video)
1315
1316
def pad_video(
    video: torch.Tensor,
1317
1318
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1319
1320
    padding_mode: str = "constant",
) -> torch.Tensor:
1321
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
1322
1323


1324
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1325
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1326
    if torch.jit.is_scripting():
1327
        return crop_image(inpt, top=top, left=left, height=height, width=width)
1328
1329

    _log_api_usage_once(crop)
1330

1331
1332
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1333

1334
1335

@_register_kernel_internal(crop, torch.Tensor)
1336
@_register_kernel_internal(crop, tv_tensors.Image)
1337
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1355
1356
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
1357
1358


1359
1360
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1361
    format: tv_tensors.BoundingBoxFormat,
1362
1363
    top: int,
    left: int,
1364
1365
1366
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1367

1368
    # Crop or implicit pad if left and/or top have negative values:
1369
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1370
        sub = [left, top, left, top]
1371
    else:
1372
1373
        sub = [left, top, 0, 0]

1374
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1375
    canvas_size = (height, width)
1376

Philip Meier's avatar
Philip Meier committed
1377
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1378
1379


1380
@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1381
def _crop_bounding_boxes_dispatch(
1382
1383
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
1384
1385
1386
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
1387
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1388
1389


1390
@_register_kernel_internal(crop, tv_tensors.Mask)
1391
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1392
1393
1394
1395
1396
1397
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

1398
    output = crop_image(mask, top, left, height, width)
1399
1400
1401
1402
1403

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1404
1405


1406
@_register_kernel_internal(crop, tv_tensors.Video)
1407
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1408
    return crop_image(video, top, left, height, width)
1409
1410


1411
def perspective(
1412
    inpt: torch.Tensor,
1413
1414
1415
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1416
    fill: _FillTypeJIT = None,
1417
    coefficients: Optional[List[float]] = None,
1418
) -> torch.Tensor:
1419
    """See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
1420
    if torch.jit.is_scripting():
1421
        return perspective_image(
1422
1423
1424
1425
1426
1427
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1428
        )
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1442

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1458
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1459
    base_grid[..., 0].copy_(x_grid)
1460
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1461
1462
1463
1464
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1465
1466
1467
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1468
1469
1470
1471
1472

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1490
@_register_kernel_internal(perspective, torch.Tensor)
1491
@_register_kernel_internal(perspective, tv_tensors.Image)
1492
def perspective_image(
1493
    image: torch.Tensor,
1494
1495
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1496
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1497
    fill: _FillTypeJIT = None,
1498
    coefficients: Optional[List[float]] = None,
1499
) -> torch.Tensor:
1500
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1501
1502
    interpolation = _check_interpolation(interpolation)

1503
    _assert_grid_transform_inputs(
1504
1505
1506
1507
1508
1509
1510
1511
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1512
    oh, ow = image.shape[-2:]
1513
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1514
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1515
    return _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1516
1517


1518
@_register_kernel_internal(perspective, PIL.Image.Image)
1519
def _perspective_image_pil(
1520
    image: PIL.Image.Image,
1521
1522
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1523
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1524
    fill: _FillTypeJIT = None,
1525
    coefficients: Optional[List[float]] = None,
1526
) -> PIL.Image.Image:
1527
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1528
    interpolation = _check_interpolation(interpolation)
1529
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1530
1531


1532
1533
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1534
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1535
    canvas_size: Tuple[int, int],
1536
1537
1538
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1539
) -> torch.Tensor:
1540
1541
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1542

1543
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1544

1545
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1546
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1547
    bounding_boxes = (
1548
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1549
    ).reshape(-1, 4)
1550

1551
1552
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1584
1585
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1586
1587
1588
1589
        dtype=dtype,
        device=device,
    )

1590
1591
1592
1593
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1594
1595
1596
1597
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1598
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1599
1600
1601
1602
1603
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1604
1605
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1606
    transformed_points = numer_points.div_(denom_points)
1607
1608
1609

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1610
    transformed_points = transformed_points.reshape(-1, 4, 2)
1611
1612
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1613
1614
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1615
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1616
        canvas_size=canvas_size,
1617
    )
1618
1619
1620

    # out_bboxes should be of shape [N boxes, 4]

Nicolas Hug's avatar
Nicolas Hug committed
1621
    return convert_bounding_box_format(
1622
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1623
    ).reshape(original_shape)
1624
1625


1626
@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1627
def _perspective_bounding_boxes_dispatch(
1628
    inpt: tv_tensors.BoundingBoxes,
1629
1630
1631
1632
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
1633
) -> tv_tensors.BoundingBoxes:
1634
1635
1636
1637
1638
1639
1640
1641
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
1642
    return tv_tensors.wrap(output, like=inpt)
1643
1644


1645
1646
def perspective_mask(
    mask: torch.Tensor,
1647
1648
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1649
    fill: _FillTypeJIT = None,
1650
    coefficients: Optional[List[float]] = None,
1651
) -> torch.Tensor:
1652
1653
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1654
1655
1656
1657
        needs_squeeze = True
    else:
        needs_squeeze = False

1658
    output = perspective_image(
1659
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1660
    )
1661

1662
1663
1664
1665
1666
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1667

1668
@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
1669
def _perspective_mask_dispatch(
1670
    inpt: tv_tensors.Mask,
1671
1672
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1673
    fill: _FillTypeJIT = None,
1674
1675
    coefficients: Optional[List[float]] = None,
    **kwargs,
1676
) -> tv_tensors.Mask:
1677
1678
1679
1680
1681
1682
1683
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
1684
    return tv_tensors.wrap(output, like=inpt)
1685
1686


1687
@_register_kernel_internal(perspective, tv_tensors.Video)
1688
1689
def perspective_video(
    video: torch.Tensor,
1690
1691
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1692
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1693
    fill: _FillTypeJIT = None,
1694
    coefficients: Optional[List[float]] = None,
1695
) -> torch.Tensor:
1696
    return perspective_image(
1697
1698
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1699
1700


1701
def elastic(
1702
    inpt: torch.Tensor,
1703
    displacement: torch.Tensor,
1704
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1705
1706
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
1707
    """See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
1708
    if torch.jit.is_scripting():
1709
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1710
1711
1712
1713
1714

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1715
1716


1717
1718
1719
elastic_transform = elastic


1720
@_register_kernel_internal(elastic, torch.Tensor)
1721
@_register_kernel_internal(elastic, tv_tensors.Image)
1722
def elastic_image(
1723
    image: torch.Tensor,
1724
    displacement: torch.Tensor,
1725
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1726
    fill: _FillTypeJIT = None,
1727
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1728
1729
1730
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1731
1732
    interpolation = _check_interpolation(interpolation)

1733
    height, width = image.shape[-2:]
1734
    device = image.device
1735
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1736
1737
1738
1739
1740
1741
1742

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1743
    # We are aware that if input image dtype is uint8 and displacement is float64 then
1744
    # displacement will be cast to float32 and all computations will be done with float32
1745
    # We can fix this later if needed
1746

1747
    expected_shape = (1, height, width, 2)
1748
1749
1750
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1751
1752
1753
    grid = _create_identity_grid((height, width), device=device, dtype=dtype).add_(
        displacement.to(dtype=dtype, device=device)
    )
1754
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1755

1756
1757
1758
    if is_cpu_half:
        output = output.to(torch.float16)

1759
    return output
1760
1761


1762
@_register_kernel_internal(elastic, PIL.Image.Image)
1763
def _elastic_image_pil(
1764
    image: PIL.Image.Image,
1765
    displacement: torch.Tensor,
1766
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1767
    fill: _FillTypeJIT = None,
1768
) -> PIL.Image.Image:
1769
    t_img = pil_to_tensor(image)
1770
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
1771
    return to_pil_image(output, mode=image.mode)
1772
1773


1774
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1775
    sy, sx = size
1776
1777
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1778
1779
    base_grid[..., 0].copy_(x_grid)

1780
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1781
1782
1783
1784
1785
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1786
1787
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1788
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1789
    canvas_size: Tuple[int, int],
1790
1791
    displacement: torch.Tensor,
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1792
1793
1794
1795
1796
1797
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1798
1799
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1800

1801
    # TODO: add in docstring about approximation we are doing for grid inversion
1802
1803
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1804
1805
1806

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1807

1808
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1809
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1810
    bounding_boxes = (
1811
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1812
    ).reshape(-1, 4)
1813

Philip Meier's avatar
Philip Meier committed
1814
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1815
1816
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1817
    inv_grid = id_grid.sub_(displacement)
1818
1819

    # Get points from bboxes
1820
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1821
1822
1823
1824
1825
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1826
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1827
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1828
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1829

1830
    transformed_points = transformed_points.reshape(-1, 4, 2)
1831
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1832
1833
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1834
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1835
        canvas_size=canvas_size,
1836
    )
1837

Nicolas Hug's avatar
Nicolas Hug committed
1838
    return convert_bounding_box_format(
1839
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1840
    ).reshape(original_shape)
1841
1842


1843
@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1844
def _elastic_bounding_boxes_dispatch(
1845
1846
    inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
1847
1848
1849
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
1850
    return tv_tensors.wrap(output, like=inpt)
1851
1852


1853
1854
1855
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1856
    fill: _FillTypeJIT = None,
1857
) -> torch.Tensor:
1858
1859
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1860
1861
1862
1863
        needs_squeeze = True
    else:
        needs_squeeze = False

1864
    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1865
1866
1867
1868
1869

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1870
1871


1872
@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
1873
def _elastic_mask_dispatch(
1874
1875
    inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
1876
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
1877
    return tv_tensors.wrap(output, like=inpt)
1878
1879


1880
@_register_kernel_internal(elastic, tv_tensors.Video)
1881
1882
1883
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1884
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1885
    fill: _FillTypeJIT = None,
1886
) -> torch.Tensor:
1887
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
1888
1889


1890
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1891
    """See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1892
    if torch.jit.is_scripting():
1893
        return center_crop_image(inpt, output_size=output_size)
1894
1895
1896
1897
1898

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1899
1900


1901
1902
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1903
1904
        s = int(output_size)
        return [s, s]
1905
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1906
        return [output_size[0], output_size[0]]
1907
1908
    else:
        return list(output_size)
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1928
@_register_kernel_internal(center_crop, torch.Tensor)
1929
@_register_kernel_internal(center_crop, tv_tensors.Image)
1930
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1931
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1932
1933
1934
1935
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1936
1937
1938

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1939
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1940

1941
        image_height, image_width = image.shape[-2:]
1942
        if crop_width == image_width and crop_height == image_height:
1943
            return image
1944
1945

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1946
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1947
1948


1949
@_register_kernel_internal(center_crop, PIL.Image.Image)
1950
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1951
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1952
    image_height, image_width = _get_size_image_pil(image)
1953
1954
1955

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1956
        image = _pad_image_pil(image, padding_ltrb, fill=0)
1957

1958
        image_height, image_width = _get_size_image_pil(image)
1959
        if crop_width == image_width and crop_height == image_height:
1960
            return image
1961
1962

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1963
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
1964
1965


1966
1967
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1968
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1969
    canvas_size: Tuple[int, int],
1970
    output_size: List[int],
1971
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1972
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
1973
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
1974
1975
1976
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
1977
1978


1979
@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1980
def _center_crop_bounding_boxes_dispatch(
1981
1982
    inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
1983
1984
1985
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
1986
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1987
1988


1989
@_register_kernel_internal(center_crop, tv_tensors.Mask)
1990
1991
1992
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1993
1994
1995
1996
        needs_squeeze = True
    else:
        needs_squeeze = False

1997
    output = center_crop_image(image=mask, output_size=output_size)
1998
1999
2000
2001
2002

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2003
2004


2005
@_register_kernel_internal(center_crop, tv_tensors.Video)
2006
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
2007
    return center_crop_image(video, output_size)
2008
2009


2010
def resized_crop(
2011
    inpt: torch.Tensor,
2012
2013
2014
2015
2016
2017
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2018
    antialias: Optional[bool] = True,
2019
) -> torch.Tensor:
2020
    """See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
2021
    if torch.jit.is_scripting():
2022
        return resized_crop_image(
2023
2024
2025
2026
2027
2028
2029
2030
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2031
        )
2032

2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2046

2047
2048

@_register_kernel_internal(resized_crop, torch.Tensor)
2049
@_register_kernel_internal(resized_crop, tv_tensors.Image)
2050
def resized_crop_image(
2051
    image: torch.Tensor,
2052
2053
2054
2055
2056
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2057
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2058
    antialias: Optional[bool] = True,
2059
) -> torch.Tensor:
2060
2061
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)
2062
2063


2064
def _resized_crop_image_pil(
2065
    image: PIL.Image.Image,
2066
2067
2068
2069
2070
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2071
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2072
) -> PIL.Image.Image:
2073
2074
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)
2075
2076


2077
@_register_kernel_internal(resized_crop, PIL.Image.Image)
2078
def _resized_crop_image_pil_dispatch(
2079
2080
2081
2082
2083
2084
2085
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2086
    antialias: Optional[bool] = True,
2087
2088
2089
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
2090
    return _resized_crop_image_pil(
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2101
2102
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2103
    format: tv_tensors.BoundingBoxFormat,
2104
2105
2106
2107
2108
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2109
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2110
2111
2112
2113
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


2114
@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2115
def _resized_crop_bounding_boxes_dispatch(
2116
2117
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
2118
2119
2120
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
2121
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2122
2123


2124
def resized_crop_mask(
2125
2126
2127
2128
2129
2130
2131
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2132
2133
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2134
2135


2136
@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
2137
def _resized_crop_mask_dispatch(
2138
2139
    inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
2140
2141
2142
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
2143
    return tv_tensors.wrap(output, like=inpt)
2144
2145


2146
@_register_kernel_internal(resized_crop, tv_tensors.Video)
2147
2148
2149
2150
2151
2152
2153
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2154
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2155
    antialias: Optional[bool] = True,
2156
) -> torch.Tensor:
2157
    return resized_crop_image(
2158
2159
2160
2161
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2162
def five_crop(
2163
2164
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2165
    """See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
2166
    if torch.jit.is_scripting():
2167
        return five_crop_image(inpt, size=size)
2168
2169
2170
2171
2172

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2173
2174


2175
2176
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2177
2178
        s = int(size)
        size = [s, s]
2179
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2180
2181
        s = size[0]
        size = [s, s]
2182
2183
2184
2185
2186
2187
2188

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2189
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
2190
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
2191
def five_crop_image(
2192
    image: torch.Tensor, size: List[int]
2193
2194
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2195
    image_height, image_width = image.shape[-2:]
2196
2197

    if crop_width > image_width or crop_height > image_height:
2198
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2199

2200
2201
2202
2203
2204
    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])
2205
2206
2207
2208

    return tl, tr, bl, br, center


2209
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2210
def _five_crop_image_pil(
2211
    image: PIL.Image.Image, size: List[int]
2212
2213
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
2214
    image_height, image_width = _get_size_image_pil(image)
2215
2216

    if crop_width > image_width or crop_height > image_height:
2217
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2218

2219
2220
2221
2222
2223
    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])
2224
2225
2226
2227

    return tl, tr, bl, br, center


2228
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
2229
2230
2231
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2232
    return five_crop_image(video, size)
2233
2234


2235
def ten_crop(
2236
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2237
) -> Tuple[
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2248
]:
2249
    """See :class:`~torchvision.transforms.v2.TenCrop` for details."""
2250
    if torch.jit.is_scripting():
2251
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
2252
2253
2254
2255
2256

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2257
2258


2259
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
2260
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
2261
def ten_crop_image(
Philip Meier's avatar
Philip Meier committed
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2275
    non_flipped = five_crop_image(image, size)
2276
2277

    if vertical_flip:
2278
        image = vertical_flip_image(image)
2279
    else:
2280
        image = horizontal_flip_image(image)
2281

2282
    flipped = five_crop_image(image, size)
2283

Philip Meier's avatar
Philip Meier committed
2284
    return non_flipped + flipped
2285
2286


2287
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
2288
def _ten_crop_image_pil(
Philip Meier's avatar
Philip Meier committed
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
2302
    non_flipped = _five_crop_image_pil(image, size)
2303
2304

    if vertical_flip:
2305
        image = _vertical_flip_image_pil(image)
2306
    else:
2307
        image = _horizontal_flip_image_pil(image)
2308

2309
    flipped = _five_crop_image_pil(image, size)
Philip Meier's avatar
Philip Meier committed
2310
2311
2312
2313

    return non_flipped + flipped


2314
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
Philip Meier's avatar
Philip Meier committed
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2329
    return ten_crop_image(video, size, vertical_flip=vertical_flip)