_geometry.py 77.7 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import datapoints
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _check_antialias,
15
    _compute_resized_output_size as __compute_resized_output_size,
16
    _get_perspective_coeffs,
17
    _interpolation_modes_from_int,
18
    InterpolationMode,
19
    pil_modes_mapping,
20
21
    pil_to_tensor,
    to_pil_image,
22
)
23

24
25
from torchvision.utils import _log_api_usage_once

26
from ._meta import clamp_bounding_box, convert_format_bounding_box, get_spatial_size_image_pil
27

28
29
from ._utils import is_simple_tensor

30

31
32
33
34
35
36
37
38
39
40
41
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


42
43
44
45
def horizontal_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-1)


46
47
48
horizontal_flip_image_pil = _FP.hflip


49
50
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(mask)
51
52


53
def horizontal_flip_bounding_box(
54
    bounding_box: torch.Tensor, format: datapoints.BoundingBoxFormat, spatial_size: Tuple[int, int]
55
56
57
) -> torch.Tensor:
    shape = bounding_box.shape

58
    bounding_box = bounding_box.clone().reshape(-1, 4)
59

60
    if format == datapoints.BoundingBoxFormat.XYXY:
61
        bounding_box[:, [2, 0]] = bounding_box[:, [0, 2]].sub_(spatial_size[1]).neg_()
62
    elif format == datapoints.BoundingBoxFormat.XYWH:
63
        bounding_box[:, 0].add_(bounding_box[:, 2]).sub_(spatial_size[1]).neg_()
64
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
65
        bounding_box[:, 0].sub_(spatial_size[1]).neg_()
66

67
    return bounding_box.reshape(shape)
68
69


70
71
72
73
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(video)


Philip Meier's avatar
Philip Meier committed
74
def horizontal_flip(inpt: datapoints._InputTypeJIT) -> datapoints._InputTypeJIT:
75
76
77
    if not torch.jit.is_scripting():
        _log_api_usage_once(horizontal_flip)

78
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
79
        return horizontal_flip_image_tensor(inpt)
80
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
81
        return inpt.horizontal_flip()
82
    elif isinstance(inpt, PIL.Image.Image):
83
        return horizontal_flip_image_pil(inpt)
84
85
    else:
        raise TypeError(
86
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
87
88
            f"but got {type(inpt)} instead."
        )
89
90


91
92
93
94
def vertical_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-2)


95
96
97
vertical_flip_image_pil = _FP.vflip


98
99
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(mask)
100
101
102


def vertical_flip_bounding_box(
103
    bounding_box: torch.Tensor, format: datapoints.BoundingBoxFormat, spatial_size: Tuple[int, int]
104
105
106
) -> torch.Tensor:
    shape = bounding_box.shape

107
    bounding_box = bounding_box.clone().reshape(-1, 4)
108

109
    if format == datapoints.BoundingBoxFormat.XYXY:
110
        bounding_box[:, [1, 3]] = bounding_box[:, [3, 1]].sub_(spatial_size[0]).neg_()
111
    elif format == datapoints.BoundingBoxFormat.XYWH:
112
        bounding_box[:, 1].add_(bounding_box[:, 3]).sub_(spatial_size[0]).neg_()
113
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
114
        bounding_box[:, 1].sub_(spatial_size[0]).neg_()
115

116
    return bounding_box.reshape(shape)
117
118


119
120
121
122
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(video)


Philip Meier's avatar
Philip Meier committed
123
def vertical_flip(inpt: datapoints._InputTypeJIT) -> datapoints._InputTypeJIT:
124
125
126
    if not torch.jit.is_scripting():
        _log_api_usage_once(vertical_flip)

127
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
128
        return vertical_flip_image_tensor(inpt)
129
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
130
        return inpt.vertical_flip()
131
    elif isinstance(inpt, PIL.Image.Image):
132
        return vertical_flip_image_pil(inpt)
133
134
    else:
        raise TypeError(
135
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
136
137
            f"but got {type(inpt)} instead."
        )
138
139


140
141
142
143
144
145
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


146
def _compute_resized_output_size(
147
    spatial_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
148
149
150
) -> List[int]:
    if isinstance(size, int):
        size = [size]
151
152
153
154
155
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
156
    return __compute_resized_output_size(spatial_size, size=size, max_size=max_size)
157
158


159
160
161
def resize_image_tensor(
    image: torch.Tensor,
    size: List[int],
162
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
163
    max_size: Optional[int] = None,
164
    antialias: Optional[Union[str, bool]] = "warn",
165
) -> torch.Tensor:
166
    interpolation = _check_interpolation(interpolation)
167
168
    antialias = _check_antialias(img=image, antialias=antialias, interpolation=interpolation)
    assert not isinstance(antialias, str)
169
    antialias = False if antialias is None else antialias
170
171
172
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
173
174
175
176
    else:
        # The default of antialias should be True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False
177

178
    shape = image.shape
179
    numel = image.numel()
180
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
181
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
182

183
184
    if (new_height, new_width) == (old_height, old_width):
        return image
185
    elif numel > 0:
186
        image = image.reshape(-1, num_channels, old_height, old_width)
187

188
        dtype = image.dtype
189
190
191
192
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
193
194
195
196
197
        elif (
            interpolation == InterpolationMode.BILINEAR
            and image.device.type == "cpu"
            and "AVX2" in torch.backends.cpu.get_cpu_capability()
        ):
198
199
            # uint8 dtype support for bilinear mode is limited to cpu and
            # according to our benchmarks non-AVX CPUs should prefer u8->f32->interpolate->u8 path
200
            acceptable_dtypes.append(torch.uint8)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
217
218
219
220
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
221
222
            image,
            size=[new_height, new_width],
223
224
            mode=interpolation.value,
            align_corners=align_corners,
225
226
            antialias=antialias,
        )
227

228
229
230
231
232
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
                image = image.clamp_(min=0, max=255)
            image = image.round_().to(dtype=dtype)

233
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
234
235


236
@torch.jit.unused
237
def resize_image_pil(
238
    image: PIL.Image.Image,
239
    size: Union[Sequence[int], int],
240
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
241
242
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
243
244
245
246
247
248
249
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

250
    interpolation = _check_interpolation(interpolation)
251
252
253
254
255

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
256
257


258
259
260
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
261
262
263
264
        needs_squeeze = True
    else:
        needs_squeeze = False

265
    output = resize_image_tensor(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
266
267
268
269
270

    if needs_squeeze:
        output = output.squeeze(0)

    return output
271
272


273
def resize_bounding_box(
274
    bounding_box: torch.Tensor, spatial_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
275
) -> Tuple[torch.Tensor, Tuple[int, int]]:
276
277
    old_height, old_width = spatial_size
    new_height, new_width = _compute_resized_output_size(spatial_size, size=size, max_size=max_size)
278
279
280
281

    if (new_height, new_width) == (old_height, old_width):
        return bounding_box, spatial_size

282
283
284
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_box.device)
285
    return (
286
        bounding_box.mul(ratios).to(bounding_box.dtype),
287
288
        (new_height, new_width),
    )
289
290


291
292
293
def resize_video(
    video: torch.Tensor,
    size: List[int],
294
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
295
    max_size: Optional[int] = None,
296
    antialias: Optional[Union[str, bool]] = "warn",
297
298
299
300
) -> torch.Tensor:
    return resize_image_tensor(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)


301
def resize(
Philip Meier's avatar
Philip Meier committed
302
    inpt: datapoints._InputTypeJIT,
303
    size: List[int],
304
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
305
    max_size: Optional[int] = None,
306
    antialias: Optional[Union[str, bool]] = "warn",
Philip Meier's avatar
Philip Meier committed
307
) -> datapoints._InputTypeJIT:
308
309
    if not torch.jit.is_scripting():
        _log_api_usage_once(resize)
310
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
311
        return resize_image_tensor(inpt, size, interpolation=interpolation, max_size=max_size, antialias=antialias)
312
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
313
        return inpt.resize(size, interpolation=interpolation, max_size=max_size, antialias=antialias)
314
    elif isinstance(inpt, PIL.Image.Image):
315
        if antialias is False:
316
317
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
        return resize_image_pil(inpt, size, interpolation=interpolation, max_size=max_size)
318
319
    else:
        raise TypeError(
320
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
321
322
            f"but got {type(inpt)} instead."
        )
323
324


325
def _affine_parse_args(
326
    angle: Union[int, float],
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

369
370
371
372
373
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
374
375
376
377

    return angle, translate, shear, center


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


def _apply_grid_transform(
Philip Meier's avatar
Philip Meier committed
475
    img: torch.Tensor, grid: torch.Tensor, mode: str, fill: datapoints._FillTypeJIT
476
477
) -> torch.Tensor:

478
479
480
481
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
498
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
499
500
501
502
503
504
505
506
507
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

508
509
510
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
511
512
513
514
515
516


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
Philip Meier's avatar
Philip Meier committed
517
    fill: datapoints._FillTypeJIT,
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


573
def affine_image_tensor(
574
    image: torch.Tensor,
575
    angle: Union[int, float],
576
577
578
    translate: List[float],
    scale: float,
    shear: List[float],
579
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
580
    fill: datapoints._FillTypeJIT = None,
581
582
    center: Optional[List[float]] = None,
) -> torch.Tensor:
583
584
    interpolation = _check_interpolation(interpolation)

585
586
    if image.numel() == 0:
        return image
587

588
    shape = image.shape
589
    ndim = image.ndim
590

591
592
593
594
595
596
597
598
599
600
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
601
602
603
604
605
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
606
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
607

608
    translate_f = [float(t) for t in translate]
609
610
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

611
612
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

613
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
614
615
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
616
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
617
618
619
620
621

    if needs_unsquash:
        output = output.reshape(shape)

    return output
622
623


624
@torch.jit.unused
625
def affine_image_pil(
626
    image: PIL.Image.Image,
627
    angle: Union[int, float],
628
629
630
    translate: List[float],
    scale: float,
    shear: List[float],
631
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
632
    fill: datapoints._FillTypeJIT = None,
633
634
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
635
    interpolation = _check_interpolation(interpolation)
636
637
638
639
640
641
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
642
        height, width = get_spatial_size_image_pil(image)
643
644
645
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

646
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
647
648


649
def _affine_bounding_box_with_expand(
650
    bounding_box: torch.Tensor,
651
    format: datapoints.BoundingBoxFormat,
652
    spatial_size: Tuple[int, int],
653
654
655
656
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
657
    center: Optional[List[float]] = None,
658
    expand: bool = False,
659
) -> Tuple[torch.Tensor, Tuple[int, int]]:
660
661
662
    if bounding_box.numel() == 0:
        return bounding_box, spatial_size

663
664
665
666
667
668
669
670
671
672
673
    original_shape = bounding_box.shape
    original_dtype = bounding_box.dtype
    bounding_box = bounding_box.clone() if bounding_box.is_floating_point() else bounding_box.float()
    dtype = bounding_box.dtype
    device = bounding_box.device
    bounding_box = (
        convert_format_bounding_box(
            bounding_box, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True
        )
    ).reshape(-1, 4)

674
675
676
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
677

678
    if center is None:
679
        height, width = spatial_size
680
681
        center = [width * 0.5, height * 0.5]

682
683
684
685
686
687
688
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
689
        .reshape(2, 3)
690
691
        .T
    )
692
693
694
695
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
696
    points = bounding_box[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
697
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
698
    # 2) Now let's transform the points using affine matrix
699
    transformed_points = torch.matmul(points, transposed_affine_matrix)
700
701
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
702
    transformed_points = transformed_points.reshape(-1, 4, 2)
703
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
704
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
705
706
707
708

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
709
        height, width = spatial_size
710
711
712
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
713
714
715
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
716
717
718
719
            ],
            dtype=dtype,
            device=device,
        )
720
        new_points = torch.matmul(points, transposed_affine_matrix)
721
        tr = torch.amin(new_points, dim=0, keepdim=True)
722
        # Translate bounding boxes
723
        out_bboxes.sub_(tr.repeat((1, 2)))
724
725
        # Estimate meta-data for image with inverted=True and with center=[0,0]
        affine_vector = _get_inverse_affine_matrix([0.0, 0.0], angle, translate, scale, shear)
726
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
727
        spatial_size = (new_height, new_width)
728

729
730
731
732
733
734
735
    out_bboxes = clamp_bounding_box(out_bboxes, format=datapoints.BoundingBoxFormat.XYXY, spatial_size=spatial_size)
    out_bboxes = convert_format_bounding_box(
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
    return out_bboxes, spatial_size
736
737
738
739


def affine_bounding_box(
    bounding_box: torch.Tensor,
740
    format: datapoints.BoundingBoxFormat,
741
    spatial_size: Tuple[int, int],
742
    angle: Union[int, float],
743
744
745
746
747
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
748
749
750
751
752
753
754
755
756
757
758
759
    out_box, _ = _affine_bounding_box_with_expand(
        bounding_box,
        format=format,
        spatial_size=spatial_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
760
761


762
763
def affine_mask(
    mask: torch.Tensor,
764
    angle: Union[int, float],
765
766
767
    translate: List[float],
    scale: float,
    shear: List[float],
Philip Meier's avatar
Philip Meier committed
768
    fill: datapoints._FillTypeJIT = None,
769
770
    center: Optional[List[float]] = None,
) -> torch.Tensor:
771
772
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
773
774
775
776
777
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = affine_image_tensor(
778
        mask,
779
780
781
782
783
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
784
        fill=fill,
785
786
787
        center=center,
    )

788
789
790
791
792
    if needs_squeeze:
        output = output.squeeze(0)

    return output

793

794
795
796
797
798
799
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
800
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
801
    fill: datapoints._FillTypeJIT = None,
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    return affine_image_tensor(
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


816
def affine(
Philip Meier's avatar
Philip Meier committed
817
    inpt: datapoints._InputTypeJIT,
818
    angle: Union[int, float],
819
820
821
    translate: List[float],
    scale: float,
    shear: List[float],
822
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
823
    fill: datapoints._FillTypeJIT = None,
824
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
825
) -> datapoints._InputTypeJIT:
826
827
828
    if not torch.jit.is_scripting():
        _log_api_usage_once(affine)

829
    # TODO: consider deprecating integers from angle and shear on the future
830
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
831
        return affine_image_tensor(
832
833
834
835
836
837
838
839
840
            inpt,
            angle,
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
841
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
842
843
844
        return inpt.affine(
            angle, translate=translate, scale=scale, shear=shear, interpolation=interpolation, fill=fill, center=center
        )
845
    elif isinstance(inpt, PIL.Image.Image):
846
        return affine_image_pil(
847
848
849
850
851
852
853
854
855
            inpt,
            angle,
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
856
857
    else:
        raise TypeError(
858
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
859
860
            f"but got {type(inpt)} instead."
        )
861
862


863
def rotate_image_tensor(
864
    image: torch.Tensor,
865
    angle: float,
866
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
867
868
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
869
    fill: datapoints._FillTypeJIT = None,
870
) -> torch.Tensor:
871
872
    interpolation = _check_interpolation(interpolation)

873
874
    shape = image.shape
    num_channels, height, width = shape[-3:]
875

876
877
    center_f = [0.0, 0.0]
    if center is not None:
878
        if expand:
879
            # TODO: Do we actually want to warn, or just document this?
880
            warnings.warn("The provided center argument has no effect on the result if expand is True")
881
882
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
883
884
885
886

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
887

888
    if image.numel() > 0:
889
890
891
892
893
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
894
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
895
896
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
897
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
898
899

        new_height, new_width = output.shape[-2:]
900
    else:
901
902
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
903

904
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
905
906


907
@torch.jit.unused
908
def rotate_image_pil(
909
    image: PIL.Image.Image,
910
    angle: float,
911
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
912
913
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
914
    fill: datapoints._FillTypeJIT = None,
915
) -> PIL.Image.Image:
916
917
    interpolation = _check_interpolation(interpolation)

918
    if center is not None and expand:
919
        warnings.warn("The provided center argument has no effect on the result if expand is True")
920
921
        center = None

922
    return _FP.rotate(
923
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
924
925
926
    )


927
928
def rotate_bounding_box(
    bounding_box: torch.Tensor,
929
    format: datapoints.BoundingBoxFormat,
930
    spatial_size: Tuple[int, int],
931
932
933
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
934
) -> Tuple[torch.Tensor, Tuple[int, int]]:
935
936
937
938
    if center is not None and expand:
        warnings.warn("The provided center argument has no effect on the result if expand is True")
        center = None

939
    return _affine_bounding_box_with_expand(
940
        bounding_box,
941
942
        format=format,
        spatial_size=spatial_size,
943
944
945
946
947
948
949
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
950
951


952
953
def rotate_mask(
    mask: torch.Tensor,
954
955
956
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
957
    fill: datapoints._FillTypeJIT = None,
958
) -> torch.Tensor:
959
960
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
961
962
963
964
965
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = rotate_image_tensor(
966
        mask,
967
968
969
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
970
        fill=fill,
971
972
973
        center=center,
    )

974
975
976
977
978
    if needs_squeeze:
        output = output.squeeze(0)

    return output

979

980
981
982
def rotate_video(
    video: torch.Tensor,
    angle: float,
983
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
984
985
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
986
    fill: datapoints._FillTypeJIT = None,
987
988
989
990
) -> torch.Tensor:
    return rotate_image_tensor(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


991
def rotate(
Philip Meier's avatar
Philip Meier committed
992
    inpt: datapoints._InputTypeJIT,
993
    angle: float,
994
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
995
996
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
997
998
    fill: datapoints._FillTypeJIT = None,
) -> datapoints._InputTypeJIT:
999
1000
1001
    if not torch.jit.is_scripting():
        _log_api_usage_once(rotate)

1002
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1003
        return rotate_image_tensor(inpt, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1004
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1005
        return inpt.rotate(angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1006
    elif isinstance(inpt, PIL.Image.Image):
1007
        return rotate_image_pil(inpt, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1008
1009
    else:
        raise TypeError(
1010
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1011
1012
            f"but got {type(inpt)} instead."
        )
1013
1014


1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1037

1038

1039
def pad_image_tensor(
1040
    image: torch.Tensor,
1041
1042
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1043
1044
    padding_mode: str = "constant",
) -> torch.Tensor:
1045
1046
1047
1048
1049
    # Be aware that while `padding` has order `[left, top, right, bottom]` has order, `torch_padding` uses
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1050
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1051
1052
1053
1054
1055
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1056
    if fill is None:
1057
1058
1059
1060
1061
1062
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1063
    else:
1064
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1065
1066
1067


def _pad_with_scalar_fill(
1068
    image: torch.Tensor,
1069
1070
1071
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1072
) -> torch.Tensor:
1073
1074
    shape = image.shape
    num_channels, height, width = shape[-3:]
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1099

1100
1101
1102
1103
1104
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1105
        image = _pad_symmetric(image, torch_padding)
1106
1107

    new_height, new_width = image.shape[-2:]
1108

1109
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1110
1111


1112
# TODO: This should be removed once torch_pad supports non-scalar padding values
1113
def _pad_with_vector_fill(
1114
    image: torch.Tensor,
1115
    torch_padding: List[int],
1116
    fill: List[float],
1117
    padding_mode: str,
1118
1119
1120
1121
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1122
1123
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1124
    fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1137
1138
1139
pad_image_pil = _FP.pad


1140
1141
def pad_mask(
    mask: torch.Tensor,
1142
1143
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1144
1145
    padding_mode: str = "constant",
) -> torch.Tensor:
1146
1147
1148
    if fill is None:
        fill = 0

1149
    if isinstance(fill, (tuple, list)):
1150
1151
        raise ValueError("Non-scalar fill value is not supported")

1152
1153
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1154
1155
1156
1157
        needs_squeeze = True
    else:
        needs_squeeze = False

1158
    output = pad_image_tensor(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1159
1160
1161
1162
1163

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1164
1165


1166
def pad_bounding_box(
vfdev's avatar
vfdev committed
1167
    bounding_box: torch.Tensor,
1168
    format: datapoints.BoundingBoxFormat,
1169
    spatial_size: Tuple[int, int],
1170
    padding: List[int],
vfdev's avatar
vfdev committed
1171
    padding_mode: str = "constant",
1172
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1173
1174
1175
1176
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1177
    left, right, top, bottom = _parse_pad_padding(padding)
1178

1179
    if format == datapoints.BoundingBoxFormat.XYXY:
1180
1181
1182
1183
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
    bounding_box = bounding_box + torch.tensor(pad, dtype=bounding_box.dtype, device=bounding_box.device)
1184

1185
    height, width = spatial_size
1186
1187
    height += top + bottom
    width += left + right
1188
    spatial_size = (height, width)
1189

1190
    return clamp_bounding_box(bounding_box, format=format, spatial_size=spatial_size), spatial_size
1191
1192


1193
1194
def pad_video(
    video: torch.Tensor,
1195
1196
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1197
1198
1199
1200
1201
    padding_mode: str = "constant",
) -> torch.Tensor:
    return pad_image_tensor(video, padding, fill=fill, padding_mode=padding_mode)


1202
def pad(
Philip Meier's avatar
Philip Meier committed
1203
    inpt: datapoints._InputTypeJIT,
1204
1205
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1206
    padding_mode: str = "constant",
Philip Meier's avatar
Philip Meier committed
1207
) -> datapoints._InputTypeJIT:
1208
1209
1210
    if not torch.jit.is_scripting():
        _log_api_usage_once(pad)

1211
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1212
1213
        return pad_image_tensor(inpt, padding, fill=fill, padding_mode=padding_mode)

1214
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1215
        return inpt.pad(padding, fill=fill, padding_mode=padding_mode)
1216
    elif isinstance(inpt, PIL.Image.Image):
1217
        return pad_image_pil(inpt, padding, fill=fill, padding_mode=padding_mode)
1218
1219
    else:
        raise TypeError(
1220
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1221
1222
            f"but got {type(inpt)} instead."
        )
1223
1224


1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
def crop_image_tensor(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1243
1244
1245
crop_image_pil = _FP.crop


1246
1247
def crop_bounding_box(
    bounding_box: torch.Tensor,
1248
    format: datapoints.BoundingBoxFormat,
1249
1250
    top: int,
    left: int,
1251
1252
1253
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1254

1255
    # Crop or implicit pad if left and/or top have negative values:
1256
    if format == datapoints.BoundingBoxFormat.XYXY:
1257
        sub = [left, top, left, top]
1258
    else:
1259
1260
1261
        sub = [left, top, 0, 0]

    bounding_box = bounding_box - torch.tensor(sub, dtype=bounding_box.dtype, device=bounding_box.device)
1262
    spatial_size = (height, width)
1263

1264
    return clamp_bounding_box(bounding_box, format=format, spatial_size=spatial_size), spatial_size
1265
1266


1267
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = crop_image_tensor(mask, top, left, height, width)

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1280
1281


1282
1283
1284
1285
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    return crop_image_tensor(video, top, left, height, width)


Philip Meier's avatar
Philip Meier committed
1286
def crop(inpt: datapoints._InputTypeJIT, top: int, left: int, height: int, width: int) -> datapoints._InputTypeJIT:
1287
1288
1289
    if not torch.jit.is_scripting():
        _log_api_usage_once(crop)

1290
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1291
        return crop_image_tensor(inpt, top, left, height, width)
1292
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1293
        return inpt.crop(top, left, height, width)
1294
    elif isinstance(inpt, PIL.Image.Image):
1295
        return crop_image_pil(inpt, top, left, height, width)
1296
1297
    else:
        raise TypeError(
1298
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1299
1300
            f"but got {type(inpt)} instead."
        )
1301
1302


1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1318
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1319
    base_grid[..., 0].copy_(x_grid)
1320
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1321
1322
1323
1324
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1325
1326
1327
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1328
1329
1330
1331
1332

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1350
def perspective_image_tensor(
1351
    image: torch.Tensor,
1352
1353
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1354
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1355
    fill: datapoints._FillTypeJIT = None,
1356
    coefficients: Optional[List[float]] = None,
1357
) -> torch.Tensor:
1358
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1359
1360
    interpolation = _check_interpolation(interpolation)

1361
1362
1363
1364
    if image.numel() == 0:
        return image

    shape = image.shape
1365
    ndim = image.ndim
1366

1367
    if ndim > 4:
1368
        image = image.reshape((-1,) + shape[-3:])
1369
        needs_unsquash = True
1370
1371
1372
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1373
1374
1375
    else:
        needs_unsquash = False

1376
    _assert_grid_transform_inputs(
1377
1378
1379
1380
1381
1382
1383
1384
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1385
    oh, ow = shape[-2:]
1386
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1387
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1388
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1389
1390

    if needs_unsquash:
1391
        output = output.reshape(shape)
1392
1393

    return output
1394
1395


1396
@torch.jit.unused
1397
def perspective_image_pil(
1398
    image: PIL.Image.Image,
1399
1400
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1401
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BICUBIC,
Philip Meier's avatar
Philip Meier committed
1402
    fill: datapoints._FillTypeJIT = None,
1403
    coefficients: Optional[List[float]] = None,
1404
) -> PIL.Image.Image:
1405
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1406
    interpolation = _check_interpolation(interpolation)
1407
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1408
1409


1410
1411
def perspective_bounding_box(
    bounding_box: torch.Tensor,
1412
    format: datapoints.BoundingBoxFormat,
1413
    spatial_size: Tuple[int, int],
1414
1415
1416
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1417
) -> torch.Tensor:
1418
1419
1420
    if bounding_box.numel() == 0:
        return bounding_box

1421
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1422
1423

    original_shape = bounding_box.shape
1424
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_box
1425
    bounding_box = (
1426
        convert_format_bounding_box(bounding_box, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1427
    ).reshape(-1, 4)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

    dtype = bounding_box.dtype if torch.is_floating_point(bounding_box) else torch.float32
    device = bounding_box.device

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1462
1463
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1464
1465
1466
1467
        dtype=dtype,
        device=device,
    )

1468
1469
1470
1471
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1472
1473
1474
1475
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1476
    points = bounding_box[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1477
1478
1479
1480
1481
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1482
1483
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1484
    transformed_points = numer_points.div_(denom_points)
1485
1486
1487

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1488
    transformed_points = transformed_points.reshape(-1, 4, 2)
1489
1490
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1491
1492
1493
1494
1495
    out_bboxes = clamp_bounding_box(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_box.dtype),
        format=datapoints.BoundingBoxFormat.XYXY,
        spatial_size=spatial_size,
    )
1496
1497
1498

    # out_bboxes should be of shape [N boxes, 4]

1499
    return convert_format_bounding_box(
1500
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1501
    ).reshape(original_shape)
1502
1503


1504
1505
def perspective_mask(
    mask: torch.Tensor,
1506
1507
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
Philip Meier's avatar
Philip Meier committed
1508
    fill: datapoints._FillTypeJIT = None,
1509
    coefficients: Optional[List[float]] = None,
1510
) -> torch.Tensor:
1511
1512
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1513
1514
1515
1516
1517
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = perspective_image_tensor(
1518
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1519
    )
1520

1521
1522
1523
1524
1525
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1526

1527
1528
def perspective_video(
    video: torch.Tensor,
1529
1530
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1531
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1532
    fill: datapoints._FillTypeJIT = None,
1533
    coefficients: Optional[List[float]] = None,
1534
) -> torch.Tensor:
1535
1536
1537
    return perspective_image_tensor(
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1538
1539


1540
def perspective(
Philip Meier's avatar
Philip Meier committed
1541
    inpt: datapoints._InputTypeJIT,
1542
1543
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1544
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1545
    fill: datapoints._FillTypeJIT = None,
1546
    coefficients: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
1547
) -> datapoints._InputTypeJIT:
1548
1549
    if not torch.jit.is_scripting():
        _log_api_usage_once(perspective)
1550
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1551
1552
1553
        return perspective_image_tensor(
            inpt, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
        )
1554
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1555
1556
1557
        return inpt.perspective(
            startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
        )
1558
    elif isinstance(inpt, PIL.Image.Image):
1559
1560
1561
        return perspective_image_pil(
            inpt, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
        )
1562
1563
    else:
        raise TypeError(
1564
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1565
1566
            f"but got {type(inpt)} instead."
        )
1567
1568


1569
def elastic_image_tensor(
1570
    image: torch.Tensor,
1571
    displacement: torch.Tensor,
1572
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1573
    fill: datapoints._FillTypeJIT = None,
1574
) -> torch.Tensor:
1575
1576
    interpolation = _check_interpolation(interpolation)

1577
1578
1579
1580
    if image.numel() == 0:
        return image

    shape = image.shape
1581
    ndim = image.ndim
1582

1583
    device = image.device
1584
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1585
1586
1587
1588
1589
1590
1591

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1592
1593
1594
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1595

1596
1597
1598
1599
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1600
    if ndim > 4:
1601
        image = image.reshape((-1,) + shape[-3:])
1602
        needs_unsquash = True
1603
1604
1605
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1606
1607
1608
    else:
        needs_unsquash = False

1609
1610
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1611

1612
1613
1614
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1615
1616

    if needs_unsquash:
1617
        output = output.reshape(shape)
1618

1619
1620
1621
    if is_cpu_half:
        output = output.to(torch.float16)

1622
    return output
1623
1624


1625
@torch.jit.unused
1626
def elastic_image_pil(
1627
    image: PIL.Image.Image,
1628
    displacement: torch.Tensor,
1629
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1630
    fill: datapoints._FillTypeJIT = None,
1631
) -> PIL.Image.Image:
1632
    t_img = pil_to_tensor(image)
1633
    output = elastic_image_tensor(t_img, displacement, interpolation=interpolation, fill=fill)
1634
    return to_pil_image(output, mode=image.mode)
1635
1636


1637
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1638
    sy, sx = size
1639
1640
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1641
1642
    base_grid[..., 0].copy_(x_grid)

1643
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1644
1645
1646
1647
1648
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1649
1650
def elastic_bounding_box(
    bounding_box: torch.Tensor,
1651
    format: datapoints.BoundingBoxFormat,
1652
    spatial_size: Tuple[int, int],
1653
1654
    displacement: torch.Tensor,
) -> torch.Tensor:
1655
1656
1657
    if bounding_box.numel() == 0:
        return bounding_box

1658
    # TODO: add in docstring about approximation we are doing for grid inversion
1659
1660
1661
1662
1663
    device = bounding_box.device
    dtype = bounding_box.dtype if torch.is_floating_point(bounding_box) else torch.float32

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1664
1665

    original_shape = bounding_box.shape
1666
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_box
1667
    bounding_box = (
1668
        convert_format_bounding_box(bounding_box, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1669
    ).reshape(-1, 4)
1670

1671
    id_grid = _create_identity_grid(spatial_size, device=device, dtype=dtype)
1672
1673
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1674
    inv_grid = id_grid.sub_(displacement)
1675
1676

    # Get points from bboxes
1677
    points = bounding_box[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1678
1679
1680
1681
1682
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1683
    # Transform points:
1684
    t_size = torch.tensor(spatial_size[::-1], device=displacement.device, dtype=displacement.dtype)
1685
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1686

1687
    transformed_points = transformed_points.reshape(-1, 4, 2)
1688
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1689
1690
1691
1692
1693
    out_bboxes = clamp_bounding_box(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_box.dtype),
        format=datapoints.BoundingBoxFormat.XYXY,
        spatial_size=spatial_size,
    )
1694

1695
    return convert_format_bounding_box(
1696
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1697
    ).reshape(original_shape)
1698
1699


1700
1701
1702
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
Philip Meier's avatar
Philip Meier committed
1703
    fill: datapoints._FillTypeJIT = None,
1704
) -> torch.Tensor:
1705
1706
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1707
1708
1709
1710
        needs_squeeze = True
    else:
        needs_squeeze = False

1711
    output = elastic_image_tensor(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1712
1713
1714
1715
1716

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1717
1718


1719
1720
1721
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1722
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1723
    fill: datapoints._FillTypeJIT = None,
1724
) -> torch.Tensor:
1725
    return elastic_image_tensor(video, displacement, interpolation=interpolation, fill=fill)
1726
1727


1728
def elastic(
Philip Meier's avatar
Philip Meier committed
1729
    inpt: datapoints._InputTypeJIT,
1730
    displacement: torch.Tensor,
1731
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1732
1733
    fill: datapoints._FillTypeJIT = None,
) -> datapoints._InputTypeJIT:
1734
1735
1736
    if not torch.jit.is_scripting():
        _log_api_usage_once(elastic)

1737
1738
1739
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1740
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1741
        return elastic_image_tensor(inpt, displacement, interpolation=interpolation, fill=fill)
1742
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1743
        return inpt.elastic(displacement, interpolation=interpolation, fill=fill)
1744
    elif isinstance(inpt, PIL.Image.Image):
1745
        return elastic_image_pil(inpt, displacement, interpolation=interpolation, fill=fill)
1746
1747
    else:
        raise TypeError(
1748
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1749
1750
            f"but got {type(inpt)} instead."
        )
1751
1752
1753
1754
1755


elastic_transform = elastic


1756
1757
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1758
1759
        s = int(output_size)
        return [s, s]
1760
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1761
        return [output_size[0], output_size[0]]
1762
1763
    else:
        return list(output_size)
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1783
def center_crop_image_tensor(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1784
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1785
1786
1787
1788
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1789
1790
1791

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1792
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1793

1794
        image_height, image_width = image.shape[-2:]
1795
        if crop_width == image_width and crop_height == image_height:
1796
            return image
1797
1798

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1799
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1800
1801


1802
@torch.jit.unused
1803
def center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1804
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1805
    image_height, image_width = get_spatial_size_image_pil(image)
1806
1807
1808

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1809
        image = pad_image_pil(image, padding_ltrb, fill=0)
1810

1811
        image_height, image_width = get_spatial_size_image_pil(image)
1812
        if crop_width == image_width and crop_height == image_height:
1813
            return image
1814
1815

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1816
    return crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
1817
1818


1819
1820
def center_crop_bounding_box(
    bounding_box: torch.Tensor,
1821
    format: datapoints.BoundingBoxFormat,
1822
    spatial_size: Tuple[int, int],
1823
    output_size: List[int],
1824
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1825
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1826
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *spatial_size)
1827
    return crop_bounding_box(bounding_box, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width)
1828
1829


1830
1831
1832
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1833
1834
1835
1836
        needs_squeeze = True
    else:
        needs_squeeze = False

1837
    output = center_crop_image_tensor(image=mask, output_size=output_size)
1838
1839
1840
1841
1842

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1843
1844


1845
1846
1847
1848
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    return center_crop_image_tensor(video, output_size)


Philip Meier's avatar
Philip Meier committed
1849
def center_crop(inpt: datapoints._InputTypeJIT, output_size: List[int]) -> datapoints._InputTypeJIT:
1850
1851
1852
    if not torch.jit.is_scripting():
        _log_api_usage_once(center_crop)

1853
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1854
        return center_crop_image_tensor(inpt, output_size)
1855
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1856
        return inpt.center_crop(output_size)
1857
    elif isinstance(inpt, PIL.Image.Image):
1858
        return center_crop_image_pil(inpt, output_size)
1859
1860
    else:
        raise TypeError(
1861
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1862
1863
            f"but got {type(inpt)} instead."
        )
1864
1865


1866
def resized_crop_image_tensor(
1867
    image: torch.Tensor,
1868
1869
1870
1871
1872
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
1873
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1874
    antialias: Optional[Union[str, bool]] = "warn",
1875
) -> torch.Tensor:
1876
1877
    image = crop_image_tensor(image, top, left, height, width)
    return resize_image_tensor(image, size, interpolation=interpolation, antialias=antialias)
1878
1879


1880
@torch.jit.unused
1881
def resized_crop_image_pil(
1882
    image: PIL.Image.Image,
1883
1884
1885
1886
1887
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
1888
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1889
) -> PIL.Image.Image:
1890
1891
    image = crop_image_pil(image, top, left, height, width)
    return resize_image_pil(image, size, interpolation=interpolation)
1892
1893


1894
1895
def resized_crop_bounding_box(
    bounding_box: torch.Tensor,
1896
    format: datapoints.BoundingBoxFormat,
1897
1898
1899
1900
1901
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
1902
1903
) -> Tuple[torch.Tensor, Tuple[int, int]]:
    bounding_box, _ = crop_bounding_box(bounding_box, format, top, left, height, width)
1904
    return resize_bounding_box(bounding_box, spatial_size=(height, width), size=size)
1905
1906


1907
def resized_crop_mask(
1908
1909
1910
1911
1912
1913
1914
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
1915
1916
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
1917
1918


1919
1920
1921
1922
1923
1924
1925
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
1926
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1927
    antialias: Optional[Union[str, bool]] = "warn",
1928
1929
1930
1931
1932
1933
) -> torch.Tensor:
    return resized_crop_image_tensor(
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


1934
def resized_crop(
Philip Meier's avatar
Philip Meier committed
1935
    inpt: datapoints._InputTypeJIT,
1936
1937
1938
1939
1940
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
1941
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1942
    antialias: Optional[Union[str, bool]] = "warn",
Philip Meier's avatar
Philip Meier committed
1943
) -> datapoints._InputTypeJIT:
1944
1945
1946
    if not torch.jit.is_scripting():
        _log_api_usage_once(resized_crop)

1947
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
1948
1949
1950
        return resized_crop_image_tensor(
            inpt, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
        )
1951
    elif isinstance(inpt, datapoints._datapoint.Datapoint):
1952
        return inpt.resized_crop(top, left, height, width, antialias=antialias, size=size, interpolation=interpolation)
1953
    elif isinstance(inpt, PIL.Image.Image):
1954
        return resized_crop_image_pil(inpt, top, left, height, width, size=size, interpolation=interpolation)
1955
1956
    else:
        raise TypeError(
1957
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
1958
1959
            f"but got {type(inpt)} instead."
        )
1960
1961


1962
1963
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
1964
1965
        s = int(size)
        size = [s, s]
1966
    elif isinstance(size, (tuple, list)) and len(size) == 1:
1967
1968
        s = size[0]
        size = [s, s]
1969
1970
1971
1972
1973
1974
1975
1976

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


def five_crop_image_tensor(
1977
    image: torch.Tensor, size: List[int]
1978
1979
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
1980
    image_height, image_width = image.shape[-2:]
1981
1982

    if crop_width > image_width or crop_height > image_height:
1983
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
1984

1985
1986
1987
1988
1989
    tl = crop_image_tensor(image, 0, 0, crop_height, crop_width)
    tr = crop_image_tensor(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_tensor(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_tensor(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_tensor(image, [crop_height, crop_width])
1990
1991
1992
1993

    return tl, tr, bl, br, center


1994
@torch.jit.unused
1995
def five_crop_image_pil(
1996
    image: PIL.Image.Image, size: List[int]
1997
1998
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
1999
    image_height, image_width = get_spatial_size_image_pil(image)
2000
2001

    if crop_width > image_width or crop_height > image_height:
2002
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2003

2004
2005
2006
2007
2008
    tl = crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_pil(image, [crop_height, crop_width])
2009
2010
2011
2012

    return tl, tr, bl, br, center


2013
2014
2015
2016
2017
2018
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    return five_crop_image_tensor(video, size)


Philip Meier's avatar
Philip Meier committed
2019
ImageOrVideoTypeJIT = Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]
2020
2021


2022
def five_crop(
2023
2024
    inpt: ImageOrVideoTypeJIT, size: List[int]
) -> Tuple[ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT]:
2025
2026
2027
    if not torch.jit.is_scripting():
        _log_api_usage_once(five_crop)

2028
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
2029
        return five_crop_image_tensor(inpt, size)
2030
    elif isinstance(inpt, datapoints.Image):
2031
        output = five_crop_image_tensor(inpt.as_subclass(torch.Tensor), size)
2032
2033
        return tuple(datapoints.Image.wrap_like(inpt, item) for item in output)  # type: ignore[return-value]
    elif isinstance(inpt, datapoints.Video):
2034
        output = five_crop_video(inpt.as_subclass(torch.Tensor), size)
2035
        return tuple(datapoints.Video.wrap_like(inpt, item) for item in output)  # type: ignore[return-value]
2036
    elif isinstance(inpt, PIL.Image.Image):
2037
        return five_crop_image_pil(inpt, size)
2038
2039
    else:
        raise TypeError(
2040
            f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, "
2041
2042
            f"but got {type(inpt)} instead."
        )
2043
2044


Philip Meier's avatar
Philip Meier committed
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
def ten_crop_image_tensor(
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    non_flipped = five_crop_image_tensor(image, size)
2060
2061

    if vertical_flip:
2062
        image = vertical_flip_image_tensor(image)
2063
    else:
2064
        image = horizontal_flip_image_tensor(image)
2065

Philip Meier's avatar
Philip Meier committed
2066
    flipped = five_crop_image_tensor(image, size)
2067

Philip Meier's avatar
Philip Meier committed
2068
    return non_flipped + flipped
2069
2070


2071
@torch.jit.unused
Philip Meier's avatar
Philip Meier committed
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
def ten_crop_image_pil(
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
    non_flipped = five_crop_image_pil(image, size)
2087
2088

    if vertical_flip:
2089
        image = vertical_flip_image_pil(image)
2090
    else:
2091
        image = horizontal_flip_image_pil(image)
2092

Philip Meier's avatar
Philip Meier committed
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
    flipped = five_crop_image_pil(image, size)

    return non_flipped + flipped


def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2112
2113
2114
2115
    return ten_crop_image_tensor(video, size, vertical_flip=vertical_flip)


def ten_crop(
Philip Meier's avatar
Philip Meier committed
2116
    inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT], size: List[int], vertical_flip: bool = False
Philip Meier's avatar
Philip Meier committed
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
) -> Tuple[
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
    ImageOrVideoTypeJIT,
]:
2129
2130
2131
    if not torch.jit.is_scripting():
        _log_api_usage_once(ten_crop)

2132
    if torch.jit.is_scripting() or is_simple_tensor(inpt):
2133
        return ten_crop_image_tensor(inpt, size, vertical_flip=vertical_flip)
2134
    elif isinstance(inpt, datapoints.Image):
2135
        output = ten_crop_image_tensor(inpt.as_subclass(torch.Tensor), size, vertical_flip=vertical_flip)
2136
        return tuple(datapoints.Image.wrap_like(inpt, item) for item in output)  # type: ignore[return-value]
2137
    elif isinstance(inpt, datapoints.Video):
2138
        output = ten_crop_video(inpt.as_subclass(torch.Tensor), size, vertical_flip=vertical_flip)
2139
        return tuple(datapoints.Video.wrap_like(inpt, item) for item in output)  # type: ignore[return-value]
2140
    elif isinstance(inpt, PIL.Image.Image):
2141
        return ten_crop_image_pil(inpt, size, vertical_flip=vertical_flip)
2142
2143
    else:
        raise TypeError(
2144
            f"Input can either be a plain tensor, an `Image` or `Video` datapoint, or a PIL image, "
2145
2146
            f"but got {type(inpt)} instead."
        )