_geometry.py 84.6 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import tv_tensors
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _compute_resized_output_size as __compute_resized_output_size,
15
    _get_perspective_coeffs,
16
    _interpolation_modes_from_int,
17
    InterpolationMode,
18
    pil_modes_mapping,
19
20
    pil_to_tensor,
    to_pil_image,
21
)
22

23
24
from torchvision.utils import _log_api_usage_once

Nicolas Hug's avatar
Nicolas Hug committed
25
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format
26

27
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
28

29

30
31
32
33
34
35
36
37
38
39
40
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


41
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
42
    """[BETA] See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
54
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
55
56
57
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
60
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
64
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
65
    return horizontal_flip_image(mask)
66
67


68
def horizontal_flip_bounding_boxes(
69
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
87
88
89
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
90
    return tv_tensors.wrap(output, like=inpt)
91
92


93
@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
94
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
95
    return horizontal_flip_image(video)
96
97


98
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
99
    """[BETA] See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
100
    if torch.jit.is_scripting():
101
        return vertical_flip_image(inpt)
102
103
104
105
106

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
107
108


109
@_register_kernel_internal(vertical_flip, torch.Tensor)
110
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
111
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
112
113
114
    return image.flip(-2)


115
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
116
def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
Philip Meier's avatar
Philip Meier committed
117
    return _FP.vflip(image)
118
119


120
@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
121
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
122
    return vertical_flip_image(mask)
123
124


125
def vertical_flip_bounding_boxes(
126
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
127
) -> torch.Tensor:
128
    shape = bounding_boxes.shape
129

130
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
131

132
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
133
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
134
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
135
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
136
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
137
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
138

139
    return bounding_boxes.reshape(shape)
140
141


142
143
@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
144
145
146
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
147
    return tv_tensors.wrap(output, like=inpt)
148

149

150
@_register_kernel_internal(vertical_flip, tv_tensors.Video)
151
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
152
    return vertical_flip_image(video)
153
154


155
156
157
158
159
160
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


161
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
162
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
163
164
165
) -> List[int]:
    if isinstance(size, int):
        size = [size]
166
167
168
169
170
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
171
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
172
173


174
def resize(
175
    inpt: torch.Tensor,
176
177
178
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
179
    antialias: Optional[bool] = True,
180
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
181
    """[BETA] See :class:`~torchvision.transforms.v2.Resize` for details."""
182
    if torch.jit.is_scripting():
183
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
184
185
186
187
188

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
189
190


191
@_register_kernel_internal(resize, torch.Tensor)
192
@_register_kernel_internal(resize, tv_tensors.Image)
193
def resize_image(
194
195
    image: torch.Tensor,
    size: List[int],
196
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
197
    max_size: Optional[int] = None,
198
    antialias: Optional[bool] = True,
199
) -> torch.Tensor:
200
    interpolation = _check_interpolation(interpolation)
201
    antialias = False if antialias is None else antialias
202
203
204
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
205
    else:
206
        # The default of antialias is True from 0.17, so we don't warn or
207
208
        # error if other interpolation modes are used. This is documented.
        antialias = False
209

210
    shape = image.shape
211
    numel = image.numel()
212
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
213
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
214

215
216
    if (new_height, new_width) == (old_height, old_width):
        return image
217
    elif numel > 0:
218
        image = image.reshape(-1, num_channels, old_height, old_width)
219

220
        dtype = image.dtype
221
222
223
224
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
225
226
227
228
229
230
231
        elif image.device.type == "cpu":
            # uint8 dtype support for bilinear and bicubic is limited to cpu and
            # according to our benchmarks, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
            if (interpolation == InterpolationMode.BILINEAR and "AVX2" in torch.backends.cpu.get_cpu_capability()) or (
                interpolation == InterpolationMode.BICUBIC
            ):
                acceptable_dtypes.append(torch.uint8)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
248
249
250
251
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
252
253
            image,
            size=[new_height, new_width],
254
255
            mode=interpolation.value,
            align_corners=align_corners,
256
257
            antialias=antialias,
        )
258

259
260
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
261
                # This path is hit on non-AVX archs, or on GPU.
262
                image = image.clamp_(min=0, max=255)
263
264
265
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
266

267
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
268
269


270
def _resize_image_pil(
271
    image: PIL.Image.Image,
272
    size: Union[Sequence[int], int],
273
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
274
275
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
276
277
278
279
280
281
282
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

283
    interpolation = _check_interpolation(interpolation)
284
285
286
287
288

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
289
290


291
@_register_kernel_internal(resize, PIL.Image.Image)
292
def __resize_image_pil_dispatch(
293
294
295
296
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
297
    antialias: Optional[bool] = True,
298
299
300
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
301
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
302
303


304
305
306
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
307
308
309
310
        needs_squeeze = True
    else:
        needs_squeeze = False

311
    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
312
313
314
315
316

    if needs_squeeze:
        output = output.squeeze(0)

    return output
317
318


319
@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
320
def _resize_mask_dispatch(
321
322
    inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
323
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
324
    return tv_tensors.wrap(output, like=inpt)
325
326


327
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
328
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
329
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
330
331
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
332
333

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
334
        return bounding_boxes, canvas_size
335

336
337
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
338
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
339
    return (
340
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
341
342
        (new_height, new_width),
    )
343
344


345
@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
346
def _resize_bounding_boxes_dispatch(
347
348
    inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
349
350
351
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
352
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
353
354


355
@_register_kernel_internal(resize, tv_tensors.Video)
356
357
358
def resize_video(
    video: torch.Tensor,
    size: List[int],
359
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
360
    max_size: Optional[int] = None,
361
    antialias: Optional[bool] = True,
362
) -> torch.Tensor:
363
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
364
365


366
def affine(
367
    inpt: torch.Tensor,
368
369
370
371
372
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
373
    fill: _FillTypeJIT = None,
374
    center: Optional[List[float]] = None,
375
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
376
    """[BETA] See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
377
    if torch.jit.is_scripting():
378
        return affine_image(
379
            inpt,
380
            angle=angle,
381
382
383
384
385
386
387
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
402
403


404
def _affine_parse_args(
405
    angle: Union[int, float],
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

448
449
450
451
452
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
453
454
455
456

    return angle, translate, shear, center


457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


553
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
554

555
556
557
558
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
575
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
576
577
578
579
580
581
582
583
584
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

585
586
587
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
588
589
590
591
592
593


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
594
    fill: _FillTypeJIT,
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


650
@_register_kernel_internal(affine, torch.Tensor)
651
@_register_kernel_internal(affine, tv_tensors.Image)
652
def affine_image(
653
    image: torch.Tensor,
654
    angle: Union[int, float],
655
656
657
    translate: List[float],
    scale: float,
    shear: List[float],
658
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
659
    fill: _FillTypeJIT = None,
660
661
    center: Optional[List[float]] = None,
) -> torch.Tensor:
662
663
    interpolation = _check_interpolation(interpolation)

664
665
    if image.numel() == 0:
        return image
666

667
    shape = image.shape
668
    ndim = image.ndim
669

670
671
672
673
674
675
676
677
678
679
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
680
681
682
683
684
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
685
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
686

687
    translate_f = [float(t) for t in translate]
688
689
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

690
691
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

692
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
693
694
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
695
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
696
697
698
699
700

    if needs_unsquash:
        output = output.reshape(shape)

    return output
701
702


703
@_register_kernel_internal(affine, PIL.Image.Image)
704
def _affine_image_pil(
705
    image: PIL.Image.Image,
706
    angle: Union[int, float],
707
708
709
    translate: List[float],
    scale: float,
    shear: List[float],
710
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
711
    fill: _FillTypeJIT = None,
712
713
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
714
    interpolation = _check_interpolation(interpolation)
715
716
717
718
719
720
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
721
        height, width = _get_size_image_pil(image)
722
723
724
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

725
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
726
727


728
729
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
730
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
731
    canvas_size: Tuple[int, int],
732
733
734
735
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
736
    center: Optional[List[float]] = None,
737
    expand: bool = False,
738
) -> Tuple[torch.Tensor, Tuple[int, int]]:
739
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
740
        return bounding_boxes, canvas_size
741
742
743
744
745
746
747

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
Nicolas Hug's avatar
Nicolas Hug committed
748
        convert_bounding_box_format(
749
            bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
750
751
752
        )
    ).reshape(-1, 4)

753
754
755
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
756

757
    if center is None:
Philip Meier's avatar
Philip Meier committed
758
        height, width = canvas_size
759
760
        center = [width * 0.5, height * 0.5]

761
762
763
764
765
766
767
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
768
        .reshape(2, 3)
769
770
        .T
    )
771
772
773
774
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
775
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
776
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
777
    # 2) Now let's transform the points using affine matrix
778
    transformed_points = torch.matmul(points, transposed_affine_matrix)
779
780
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
781
    transformed_points = transformed_points.reshape(-1, 4, 2)
782
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
783
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
784
785
786
787

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
788
        height, width = canvas_size
789
790
791
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
792
793
794
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
795
796
797
798
            ],
            dtype=dtype,
            device=device,
        )
799
        new_points = torch.matmul(points, transposed_affine_matrix)
800
        tr = torch.amin(new_points, dim=0, keepdim=True)
801
        # Translate bounding boxes
802
        out_bboxes.sub_(tr.repeat((1, 2)))
803
804
        # Estimate meta-data for image with inverted=True
        affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
805
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
806
        canvas_size = (new_height, new_width)
807

808
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
Nicolas Hug's avatar
Nicolas Hug committed
809
    out_bboxes = convert_bounding_box_format(
810
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
811
812
813
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
814
    return out_bboxes, canvas_size
815
816


817
818
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
819
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
820
    canvas_size: Tuple[int, int],
821
    angle: Union[int, float],
822
823
824
825
826
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
827
828
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
829
        format=format,
Philip Meier's avatar
Philip Meier committed
830
        canvas_size=canvas_size,
831
832
833
834
835
836
837
838
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
839
840


841
@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
842
def _affine_bounding_boxes_dispatch(
843
    inpt: tv_tensors.BoundingBoxes,
844
845
846
847
848
849
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
850
) -> tv_tensors.BoundingBoxes:
851
852
853
854
855
856
857
858
859
860
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
861
    return tv_tensors.wrap(output, like=inpt)
862
863


864
865
def affine_mask(
    mask: torch.Tensor,
866
    angle: Union[int, float],
867
868
869
    translate: List[float],
    scale: float,
    shear: List[float],
870
    fill: _FillTypeJIT = None,
871
872
    center: Optional[List[float]] = None,
) -> torch.Tensor:
873
874
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
875
876
877
878
        needs_squeeze = True
    else:
        needs_squeeze = False

879
    output = affine_image(
880
        mask,
881
882
883
884
885
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
886
        fill=fill,
887
888
889
        center=center,
    )

890
891
892
893
894
    if needs_squeeze:
        output = output.squeeze(0)

    return output

895

896
@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
897
def _affine_mask_dispatch(
898
    inpt: tv_tensors.Mask,
899
900
901
902
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
903
    fill: _FillTypeJIT = None,
904
905
    center: Optional[List[float]] = None,
    **kwargs,
906
) -> tv_tensors.Mask:
907
908
909
910
911
912
913
914
915
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
916
    return tv_tensors.wrap(output, like=inpt)
917
918


919
@_register_kernel_internal(affine, tv_tensors.Video)
920
921
922
923
924
925
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
926
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
927
    fill: _FillTypeJIT = None,
928
929
    center: Optional[List[float]] = None,
) -> torch.Tensor:
930
    return affine_image(
931
932
933
934
935
936
937
938
939
940
941
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


942
def rotate(
943
    inpt: torch.Tensor,
944
    angle: float,
945
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
946
    expand: bool = False,
947
    center: Optional[List[float]] = None,
948
949
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
950
    """[BETA] See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
951
    if torch.jit.is_scripting():
952
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
953

954
    _log_api_usage_once(rotate)
955

956
957
958
959
960
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
961
@_register_kernel_internal(rotate, tv_tensors.Image)
962
def rotate_image(
963
    image: torch.Tensor,
964
    angle: float,
965
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
966
967
    expand: bool = False,
    center: Optional[List[float]] = None,
968
    fill: _FillTypeJIT = None,
969
) -> torch.Tensor:
970
971
    interpolation = _check_interpolation(interpolation)

972
973
    shape = image.shape
    num_channels, height, width = shape[-3:]
974

975
976
    center_f = [0.0, 0.0]
    if center is not None:
977
978
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
979
980
981
982

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
983

984
    if image.numel() > 0:
985
986
987
988
989
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
990
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
991
992
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
993
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
994
995

        new_height, new_width = output.shape[-2:]
996
    else:
997
998
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
999

1000
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
1001
1002


1003
@_register_kernel_internal(rotate, PIL.Image.Image)
1004
def _rotate_image_pil(
1005
    image: PIL.Image.Image,
1006
    angle: float,
1007
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1008
1009
    expand: bool = False,
    center: Optional[List[float]] = None,
1010
    fill: _FillTypeJIT = None,
1011
) -> PIL.Image.Image:
1012
1013
    interpolation = _check_interpolation(interpolation)

1014
    return _FP.rotate(
1015
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1016
1017
1018
    )


1019
1020
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1021
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1022
    canvas_size: Tuple[int, int],
1023
1024
1025
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1026
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1027
1028
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1029
        format=format,
Philip Meier's avatar
Philip Meier committed
1030
        canvas_size=canvas_size,
1031
1032
1033
1034
1035
1036
1037
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1038
1039


1040
@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1041
def _rotate_bounding_boxes_dispatch(
1042
1043
    inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
1044
1045
1046
1047
1048
1049
1050
1051
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
1052
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1053
1054


1055
1056
def rotate_mask(
    mask: torch.Tensor,
1057
1058
1059
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1060
    fill: _FillTypeJIT = None,
1061
) -> torch.Tensor:
1062
1063
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1064
1065
1066
1067
        needs_squeeze = True
    else:
        needs_squeeze = False

1068
    output = rotate_image(
1069
        mask,
1070
1071
1072
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1073
        fill=fill,
1074
1075
1076
        center=center,
    )

1077
1078
1079
1080
1081
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1082

1083
@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
1084
def _rotate_mask_dispatch(
1085
    inpt: tv_tensors.Mask,
1086
1087
1088
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1089
    fill: _FillTypeJIT = None,
1090
    **kwargs,
1091
) -> tv_tensors.Mask:
1092
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
1093
    return tv_tensors.wrap(output, like=inpt)
1094
1095


1096
@_register_kernel_internal(rotate, tv_tensors.Video)
1097
1098
1099
def rotate_video(
    video: torch.Tensor,
    angle: float,
1100
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1101
1102
    expand: bool = False,
    center: Optional[List[float]] = None,
1103
    fill: _FillTypeJIT = None,
1104
) -> torch.Tensor:
1105
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1106
1107


1108
def pad(
1109
    inpt: torch.Tensor,
1110
1111
1112
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1113
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1114
    """[BETA] See :class:`~torchvision.transforms.v2.Pad` for details."""
1115
    if torch.jit.is_scripting():
1116
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1117

1118
    _log_api_usage_once(pad)
1119

1120
1121
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1122
1123


1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1146

1147

1148
@_register_kernel_internal(pad, torch.Tensor)
1149
@_register_kernel_internal(pad, tv_tensors.Image)
1150
def pad_image(
1151
    image: torch.Tensor,
1152
1153
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1154
1155
    padding_mode: str = "constant",
) -> torch.Tensor:
1156
    # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
1157
1158
1159
1160
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1161
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1162
1163
1164
1165
1166
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1167
    if fill is None:
1168
1169
1170
1171
1172
1173
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1174
    else:
1175
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1176
1177
1178


def _pad_with_scalar_fill(
1179
    image: torch.Tensor,
1180
1181
1182
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1183
) -> torch.Tensor:
1184
1185
    shape = image.shape
    num_channels, height, width = shape[-3:]
1186

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1210

1211
1212
1213
1214
1215
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1216
        image = _pad_symmetric(image, torch_padding)
1217
1218

    new_height, new_width = image.shape[-2:]
1219

1220
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1221
1222


1223
# TODO: This should be removed once torch_pad supports non-scalar padding values
1224
def _pad_with_vector_fill(
1225
    image: torch.Tensor,
1226
    torch_padding: List[int],
1227
    fill: List[float],
1228
    padding_mode: str,
1229
1230
1231
1232
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1233
1234
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1235
1236
1237
1238
1239

    # We are creating the tensor in the autodetected dtype first and convert to the right one after to avoid an implicit
    # float -> int conversion. That happens for example for the valid input of a uint8 image with floating point fill
    # value.
    fill = torch.tensor(fill, device=image.device).to(dtype=image.dtype).reshape(-1, 1, 1)
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1252
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1253
1254


1255
@_register_kernel_internal(pad, tv_tensors.Mask)
1256
1257
def pad_mask(
    mask: torch.Tensor,
1258
1259
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1260
1261
    padding_mode: str = "constant",
) -> torch.Tensor:
1262
1263
1264
    if fill is None:
        fill = 0

1265
    if isinstance(fill, (tuple, list)):
1266
1267
        raise ValueError("Non-scalar fill value is not supported")

1268
1269
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1270
1271
1272
1273
        needs_squeeze = True
    else:
        needs_squeeze = False

1274
    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1275
1276
1277
1278
1279

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1280
1281


1282
1283
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1284
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1285
    canvas_size: Tuple[int, int],
1286
    padding: List[int],
vfdev's avatar
vfdev committed
1287
    padding_mode: str = "constant",
1288
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1289
1290
1291
1292
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1293
    left, right, top, bottom = _parse_pad_padding(padding)
1294

1295
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1296
1297
1298
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1299
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1300

Philip Meier's avatar
Philip Meier committed
1301
    height, width = canvas_size
1302
1303
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1304
    canvas_size = (height, width)
1305

Philip Meier's avatar
Philip Meier committed
1306
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1307
1308


1309
@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1310
def _pad_bounding_boxes_dispatch(
1311
1312
    inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
1313
1314
1315
1316
1317
1318
1319
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
1320
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1321
1322


1323
@_register_kernel_internal(pad, tv_tensors.Video)
1324
1325
def pad_video(
    video: torch.Tensor,
1326
1327
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1328
1329
    padding_mode: str = "constant",
) -> torch.Tensor:
1330
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
1331
1332


1333
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1334
    """[BETA] See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1335
    if torch.jit.is_scripting():
1336
        return crop_image(inpt, top=top, left=left, height=height, width=width)
1337
1338

    _log_api_usage_once(crop)
1339

1340
1341
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1342

1343
1344

@_register_kernel_internal(crop, torch.Tensor)
1345
@_register_kernel_internal(crop, tv_tensors.Image)
1346
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1364
1365
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
1366
1367


1368
1369
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1370
    format: tv_tensors.BoundingBoxFormat,
1371
1372
    top: int,
    left: int,
1373
1374
1375
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1376

1377
    # Crop or implicit pad if left and/or top have negative values:
1378
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1379
        sub = [left, top, left, top]
1380
    else:
1381
1382
        sub = [left, top, 0, 0]

1383
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1384
    canvas_size = (height, width)
1385

Philip Meier's avatar
Philip Meier committed
1386
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1387
1388


1389
@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1390
def _crop_bounding_boxes_dispatch(
1391
1392
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
1393
1394
1395
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
1396
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1397
1398


1399
@_register_kernel_internal(crop, tv_tensors.Mask)
1400
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1401
1402
1403
1404
1405
1406
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

1407
    output = crop_image(mask, top, left, height, width)
1408
1409
1410
1411
1412

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1413
1414


1415
@_register_kernel_internal(crop, tv_tensors.Video)
1416
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1417
    return crop_image(video, top, left, height, width)
1418
1419


1420
def perspective(
1421
    inpt: torch.Tensor,
1422
1423
1424
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1425
    fill: _FillTypeJIT = None,
1426
    coefficients: Optional[List[float]] = None,
1427
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1428
    """[BETA] See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
1429
    if torch.jit.is_scripting():
1430
        return perspective_image(
1431
1432
1433
1434
1435
1436
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1437
        )
1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1467
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1468
    base_grid[..., 0].copy_(x_grid)
1469
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1470
1471
1472
1473
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1474
1475
1476
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1477
1478
1479
1480
1481

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1499
@_register_kernel_internal(perspective, torch.Tensor)
1500
@_register_kernel_internal(perspective, tv_tensors.Image)
1501
def perspective_image(
1502
    image: torch.Tensor,
1503
1504
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1505
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1506
    fill: _FillTypeJIT = None,
1507
    coefficients: Optional[List[float]] = None,
1508
) -> torch.Tensor:
1509
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1510
1511
    interpolation = _check_interpolation(interpolation)

1512
1513
1514
1515
    if image.numel() == 0:
        return image

    shape = image.shape
1516
    ndim = image.ndim
1517

1518
    if ndim > 4:
1519
        image = image.reshape((-1,) + shape[-3:])
1520
        needs_unsquash = True
1521
1522
1523
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1524
1525
1526
    else:
        needs_unsquash = False

1527
    _assert_grid_transform_inputs(
1528
1529
1530
1531
1532
1533
1534
1535
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1536
    oh, ow = shape[-2:]
1537
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1538
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1539
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1540
1541

    if needs_unsquash:
1542
        output = output.reshape(shape)
1543
1544

    return output
1545
1546


1547
@_register_kernel_internal(perspective, PIL.Image.Image)
1548
def _perspective_image_pil(
1549
    image: PIL.Image.Image,
1550
1551
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1552
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1553
    fill: _FillTypeJIT = None,
1554
    coefficients: Optional[List[float]] = None,
1555
) -> PIL.Image.Image:
1556
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1557
    interpolation = _check_interpolation(interpolation)
1558
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1559
1560


1561
1562
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1563
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1564
    canvas_size: Tuple[int, int],
1565
1566
1567
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1568
) -> torch.Tensor:
1569
1570
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1571

1572
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1573

1574
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1575
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1576
    bounding_boxes = (
1577
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1578
    ).reshape(-1, 4)
1579

1580
1581
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1613
1614
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1615
1616
1617
1618
        dtype=dtype,
        device=device,
    )

1619
1620
1621
1622
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1623
1624
1625
1626
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1627
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1628
1629
1630
1631
1632
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1633
1634
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1635
    transformed_points = numer_points.div_(denom_points)
1636
1637
1638

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1639
    transformed_points = transformed_points.reshape(-1, 4, 2)
1640
1641
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1642
1643
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1644
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1645
        canvas_size=canvas_size,
1646
    )
1647
1648
1649

    # out_bboxes should be of shape [N boxes, 4]

Nicolas Hug's avatar
Nicolas Hug committed
1650
    return convert_bounding_box_format(
1651
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1652
    ).reshape(original_shape)
1653
1654


1655
@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1656
def _perspective_bounding_boxes_dispatch(
1657
    inpt: tv_tensors.BoundingBoxes,
1658
1659
1660
1661
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
1662
) -> tv_tensors.BoundingBoxes:
1663
1664
1665
1666
1667
1668
1669
1670
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
1671
    return tv_tensors.wrap(output, like=inpt)
1672
1673


1674
1675
def perspective_mask(
    mask: torch.Tensor,
1676
1677
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1678
    fill: _FillTypeJIT = None,
1679
    coefficients: Optional[List[float]] = None,
1680
) -> torch.Tensor:
1681
1682
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1683
1684
1685
1686
        needs_squeeze = True
    else:
        needs_squeeze = False

1687
    output = perspective_image(
1688
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1689
    )
1690

1691
1692
1693
1694
1695
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1696

1697
@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
1698
def _perspective_mask_dispatch(
1699
    inpt: tv_tensors.Mask,
1700
1701
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1702
    fill: _FillTypeJIT = None,
1703
1704
    coefficients: Optional[List[float]] = None,
    **kwargs,
1705
) -> tv_tensors.Mask:
1706
1707
1708
1709
1710
1711
1712
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
1713
    return tv_tensors.wrap(output, like=inpt)
1714
1715


1716
@_register_kernel_internal(perspective, tv_tensors.Video)
1717
1718
def perspective_video(
    video: torch.Tensor,
1719
1720
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1721
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1722
    fill: _FillTypeJIT = None,
1723
    coefficients: Optional[List[float]] = None,
1724
) -> torch.Tensor:
1725
    return perspective_image(
1726
1727
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1728
1729


1730
def elastic(
1731
    inpt: torch.Tensor,
1732
    displacement: torch.Tensor,
1733
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1734
1735
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1736
    """[BETA] See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
1737
    if torch.jit.is_scripting():
1738
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1739
1740
1741
1742
1743

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1744
1745


1746
1747
1748
elastic_transform = elastic


1749
@_register_kernel_internal(elastic, torch.Tensor)
1750
@_register_kernel_internal(elastic, tv_tensors.Image)
1751
def elastic_image(
1752
    image: torch.Tensor,
1753
    displacement: torch.Tensor,
1754
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1755
    fill: _FillTypeJIT = None,
1756
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1757
1758
1759
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1760
1761
    interpolation = _check_interpolation(interpolation)

1762
1763
1764
1765
    if image.numel() == 0:
        return image

    shape = image.shape
1766
    ndim = image.ndim
1767

1768
    device = image.device
1769
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1770
1771
1772
1773
1774
1775
1776

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1777
1778
1779
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1780

1781
1782
1783
1784
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1785
    if ndim > 4:
1786
        image = image.reshape((-1,) + shape[-3:])
1787
        needs_unsquash = True
1788
1789
1790
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1791
1792
1793
    else:
        needs_unsquash = False

1794
1795
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1796

1797
1798
1799
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1800
1801

    if needs_unsquash:
1802
        output = output.reshape(shape)
1803

1804
1805
1806
    if is_cpu_half:
        output = output.to(torch.float16)

1807
    return output
1808
1809


1810
@_register_kernel_internal(elastic, PIL.Image.Image)
1811
def _elastic_image_pil(
1812
    image: PIL.Image.Image,
1813
    displacement: torch.Tensor,
1814
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1815
    fill: _FillTypeJIT = None,
1816
) -> PIL.Image.Image:
1817
    t_img = pil_to_tensor(image)
1818
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
1819
    return to_pil_image(output, mode=image.mode)
1820
1821


1822
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1823
    sy, sx = size
1824
1825
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1826
1827
    base_grid[..., 0].copy_(x_grid)

1828
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1829
1830
1831
1832
1833
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1834
1835
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1836
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1837
    canvas_size: Tuple[int, int],
1838
1839
    displacement: torch.Tensor,
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1840
1841
1842
1843
1844
1845
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1846
1847
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1848

1849
    # TODO: add in docstring about approximation we are doing for grid inversion
1850
1851
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1852
1853
1854

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1855

1856
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1857
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1858
    bounding_boxes = (
1859
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1860
    ).reshape(-1, 4)
1861

Philip Meier's avatar
Philip Meier committed
1862
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1863
1864
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1865
    inv_grid = id_grid.sub_(displacement)
1866
1867

    # Get points from bboxes
1868
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1869
1870
1871
1872
1873
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1874
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1875
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1876
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1877

1878
    transformed_points = transformed_points.reshape(-1, 4, 2)
1879
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1880
1881
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1882
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1883
        canvas_size=canvas_size,
1884
    )
1885

Nicolas Hug's avatar
Nicolas Hug committed
1886
    return convert_bounding_box_format(
1887
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1888
    ).reshape(original_shape)
1889
1890


1891
@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1892
def _elastic_bounding_boxes_dispatch(
1893
1894
    inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
1895
1896
1897
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
1898
    return tv_tensors.wrap(output, like=inpt)
1899
1900


1901
1902
1903
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1904
    fill: _FillTypeJIT = None,
1905
) -> torch.Tensor:
1906
1907
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1908
1909
1910
1911
        needs_squeeze = True
    else:
        needs_squeeze = False

1912
    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1913
1914
1915
1916
1917

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1918
1919


1920
@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
1921
def _elastic_mask_dispatch(
1922
1923
    inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
1924
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
1925
    return tv_tensors.wrap(output, like=inpt)
1926
1927


1928
@_register_kernel_internal(elastic, tv_tensors.Video)
1929
1930
1931
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1932
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1933
    fill: _FillTypeJIT = None,
1934
) -> torch.Tensor:
1935
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
1936
1937


1938
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1939
    """[BETA] See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1940
    if torch.jit.is_scripting():
1941
        return center_crop_image(inpt, output_size=output_size)
1942
1943
1944
1945
1946

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1947
1948


1949
1950
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1951
1952
        s = int(output_size)
        return [s, s]
1953
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1954
        return [output_size[0], output_size[0]]
1955
1956
    else:
        return list(output_size)
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1976
@_register_kernel_internal(center_crop, torch.Tensor)
1977
@_register_kernel_internal(center_crop, tv_tensors.Image)
1978
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1979
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1980
1981
1982
1983
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1984
1985
1986

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1987
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1988

1989
        image_height, image_width = image.shape[-2:]
1990
        if crop_width == image_width and crop_height == image_height:
1991
            return image
1992
1993

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1994
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1995
1996


1997
@_register_kernel_internal(center_crop, PIL.Image.Image)
1998
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1999
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
2000
    image_height, image_width = _get_size_image_pil(image)
2001
2002
2003

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
2004
        image = _pad_image_pil(image, padding_ltrb, fill=0)
2005

2006
        image_height, image_width = _get_size_image_pil(image)
2007
        if crop_width == image_width and crop_height == image_height:
2008
            return image
2009
2010

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2011
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2012
2013


2014
2015
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2016
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2017
    canvas_size: Tuple[int, int],
2018
    output_size: List[int],
2019
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2020
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2021
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2022
2023
2024
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2025
2026


2027
@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2028
def _center_crop_bounding_boxes_dispatch(
2029
2030
    inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
2031
2032
2033
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
2034
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2035
2036


2037
@_register_kernel_internal(center_crop, tv_tensors.Mask)
2038
2039
2040
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2041
2042
2043
2044
        needs_squeeze = True
    else:
        needs_squeeze = False

2045
    output = center_crop_image(image=mask, output_size=output_size)
2046
2047
2048
2049
2050

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2051
2052


2053
@_register_kernel_internal(center_crop, tv_tensors.Video)
2054
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
2055
    return center_crop_image(video, output_size)
2056
2057


2058
def resized_crop(
2059
    inpt: torch.Tensor,
2060
2061
2062
2063
2064
2065
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2066
    antialias: Optional[bool] = True,
2067
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
2068
    """[BETA] See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
2069
    if torch.jit.is_scripting():
2070
        return resized_crop_image(
2071
2072
2073
2074
2075
2076
2077
2078
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2079
        )
2080

2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2094

2095
2096

@_register_kernel_internal(resized_crop, torch.Tensor)
2097
@_register_kernel_internal(resized_crop, tv_tensors.Image)
2098
def resized_crop_image(
2099
    image: torch.Tensor,
2100
2101
2102
2103
2104
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2105
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2106
    antialias: Optional[bool] = True,
2107
) -> torch.Tensor:
2108
2109
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)
2110
2111


2112
def _resized_crop_image_pil(
2113
    image: PIL.Image.Image,
2114
2115
2116
2117
2118
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2119
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2120
) -> PIL.Image.Image:
2121
2122
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)
2123
2124


2125
@_register_kernel_internal(resized_crop, PIL.Image.Image)
2126
def _resized_crop_image_pil_dispatch(
2127
2128
2129
2130
2131
2132
2133
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2134
    antialias: Optional[bool] = True,
2135
2136
2137
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
2138
    return _resized_crop_image_pil(
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2149
2150
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2151
    format: tv_tensors.BoundingBoxFormat,
2152
2153
2154
2155
2156
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2157
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2158
2159
2160
2161
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


2162
@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2163
def _resized_crop_bounding_boxes_dispatch(
2164
2165
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
2166
2167
2168
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
2169
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2170
2171


2172
def resized_crop_mask(
2173
2174
2175
2176
2177
2178
2179
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2180
2181
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2182
2183


2184
@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
2185
def _resized_crop_mask_dispatch(
2186
2187
    inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
2188
2189
2190
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
2191
    return tv_tensors.wrap(output, like=inpt)
2192
2193


2194
@_register_kernel_internal(resized_crop, tv_tensors.Video)
2195
2196
2197
2198
2199
2200
2201
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2202
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2203
    antialias: Optional[bool] = True,
2204
) -> torch.Tensor:
2205
    return resized_crop_image(
2206
2207
2208
2209
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2210
def five_crop(
2211
2212
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
Nicolas Hug's avatar
Nicolas Hug committed
2213
    """[BETA] See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
2214
    if torch.jit.is_scripting():
2215
        return five_crop_image(inpt, size=size)
2216
2217
2218
2219
2220

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2221
2222


2223
2224
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2225
2226
        s = int(size)
        size = [s, s]
2227
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2228
2229
        s = size[0]
        size = [s, s]
2230
2231
2232
2233
2234
2235
2236

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2237
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
2238
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
2239
def five_crop_image(
2240
    image: torch.Tensor, size: List[int]
2241
2242
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2243
    image_height, image_width = image.shape[-2:]
2244
2245

    if crop_width > image_width or crop_height > image_height:
2246
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2247

2248
2249
2250
2251
2252
    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])
2253
2254
2255
2256

    return tl, tr, bl, br, center


2257
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2258
def _five_crop_image_pil(
2259
    image: PIL.Image.Image, size: List[int]
2260
2261
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
2262
    image_height, image_width = _get_size_image_pil(image)
2263
2264

    if crop_width > image_width or crop_height > image_height:
2265
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2266

2267
2268
2269
2270
2271
    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])
2272
2273
2274
2275

    return tl, tr, bl, br, center


2276
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
2277
2278
2279
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2280
    return five_crop_image(video, size)
2281
2282


2283
def ten_crop(
2284
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2285
) -> Tuple[
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2296
]:
Nicolas Hug's avatar
Nicolas Hug committed
2297
    """[BETA] See :class:`~torchvision.transforms.v2.TenCrop` for details."""
2298
    if torch.jit.is_scripting():
2299
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
2300
2301
2302
2303
2304

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2305
2306


2307
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
2308
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
2309
def ten_crop_image(
Philip Meier's avatar
Philip Meier committed
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2323
    non_flipped = five_crop_image(image, size)
2324
2325

    if vertical_flip:
2326
        image = vertical_flip_image(image)
2327
    else:
2328
        image = horizontal_flip_image(image)
2329

2330
    flipped = five_crop_image(image, size)
2331

Philip Meier's avatar
Philip Meier committed
2332
    return non_flipped + flipped
2333
2334


2335
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
2336
def _ten_crop_image_pil(
Philip Meier's avatar
Philip Meier committed
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
2350
    non_flipped = _five_crop_image_pil(image, size)
2351
2352

    if vertical_flip:
2353
        image = _vertical_flip_image_pil(image)
2354
    else:
2355
        image = _horizontal_flip_image_pil(image)
2356

2357
    flipped = _five_crop_image_pil(image, size)
Philip Meier's avatar
Philip Meier committed
2358
2359
2360
2361

    return non_flipped + flipped


2362
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
Philip Meier's avatar
Philip Meier committed
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2377
    return ten_crop_image(video, size, vertical_flip=vertical_flip)