_geometry.py 84.1 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import datapoints
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _check_antialias,
15
    _compute_resized_output_size as __compute_resized_output_size,
16
    _get_perspective_coeffs,
17
    _interpolation_modes_from_int,
18
    InterpolationMode,
19
    pil_modes_mapping,
20
21
    pil_to_tensor,
    to_pil_image,
22
)
23

24
25
from torchvision.utils import _log_api_usage_once

26
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_format_bounding_boxes
27

28
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
29

30

31
32
33
34
35
36
37
38
39
40
41
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


42
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, datapoints.Image)
54
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
55
56
57
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
60
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, datapoints.Mask)
64
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
65
    return horizontal_flip_image(mask)
66
67


68
def horizontal_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
69
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
87
88
89
@_register_kernel_internal(horizontal_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
90
    return datapoints.wrap(output, like=inpt)
91
92
93


@_register_kernel_internal(horizontal_flip, datapoints.Video)
94
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
95
    return horizontal_flip_image(video)
96
97


98
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
99
    if torch.jit.is_scripting():
100
        return vertical_flip_image(inpt)
101
102
103
104
105

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
106
107


108
@_register_kernel_internal(vertical_flip, torch.Tensor)
109
@_register_kernel_internal(vertical_flip, datapoints.Image)
110
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
111
112
113
    return image.flip(-2)


114
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
115
def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
Philip Meier's avatar
Philip Meier committed
116
    return _FP.vflip(image)
117
118


119
@_register_kernel_internal(vertical_flip, datapoints.Mask)
120
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
121
    return vertical_flip_image(mask)
122
123


124
def vertical_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
125
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
126
) -> torch.Tensor:
127
    shape = bounding_boxes.shape
128

129
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
130

131
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
132
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
133
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
134
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
135
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
136
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
137

138
    return bounding_boxes.reshape(shape)
139
140


141
142
143
144
145
@_register_kernel_internal(vertical_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
146
    return datapoints.wrap(output, like=inpt)
147

148

149
150
@_register_kernel_internal(vertical_flip, datapoints.Video)
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
151
    return vertical_flip_image(video)
152
153


154
155
156
157
158
159
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


160
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
161
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
162
163
164
) -> List[int]:
    if isinstance(size, int):
        size = [size]
165
166
167
168
169
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
170
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
171
172


173
def resize(
174
    inpt: torch.Tensor,
175
176
177
178
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
179
) -> torch.Tensor:
180
    if torch.jit.is_scripting():
181
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
182
183
184
185
186

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
187
188


189
@_register_kernel_internal(resize, torch.Tensor)
190
@_register_kernel_internal(resize, datapoints.Image)
191
def resize_image(
192
193
    image: torch.Tensor,
    size: List[int],
194
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
195
    max_size: Optional[int] = None,
196
    antialias: Optional[Union[str, bool]] = "warn",
197
) -> torch.Tensor:
198
    interpolation = _check_interpolation(interpolation)
199
200
    antialias = _check_antialias(img=image, antialias=antialias, interpolation=interpolation)
    assert not isinstance(antialias, str)
201
    antialias = False if antialias is None else antialias
202
203
204
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
205
206
207
208
    else:
        # The default of antialias should be True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False
209

210
    shape = image.shape
211
    numel = image.numel()
212
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
213
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
214

215
216
    if (new_height, new_width) == (old_height, old_width):
        return image
217
    elif numel > 0:
218
        image = image.reshape(-1, num_channels, old_height, old_width)
219

220
        dtype = image.dtype
221
222
223
224
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
225
226
227
228
229
230
231
        elif image.device.type == "cpu":
            # uint8 dtype support for bilinear and bicubic is limited to cpu and
            # according to our benchmarks, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
            if (interpolation == InterpolationMode.BILINEAR and "AVX2" in torch.backends.cpu.get_cpu_capability()) or (
                interpolation == InterpolationMode.BICUBIC
            ):
                acceptable_dtypes.append(torch.uint8)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
248
249
250
251
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
252
253
            image,
            size=[new_height, new_width],
254
255
            mode=interpolation.value,
            align_corners=align_corners,
256
257
            antialias=antialias,
        )
258

259
260
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
261
                # This path is hit on non-AVX archs, or on GPU.
262
                image = image.clamp_(min=0, max=255)
263
264
265
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
266

267
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
268
269


270
def _resize_image_pil(
271
    image: PIL.Image.Image,
272
    size: Union[Sequence[int], int],
273
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
274
275
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
276
277
278
279
280
281
282
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

283
    interpolation = _check_interpolation(interpolation)
284
285
286
287
288

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
289
290


291
@_register_kernel_internal(resize, PIL.Image.Image)
292
def __resize_image_pil_dispatch(
293
294
295
296
297
298
299
300
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
301
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
302
303


304
305
306
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
307
308
309
310
        needs_squeeze = True
    else:
        needs_squeeze = False

311
    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
312
313
314
315
316

    if needs_squeeze:
        output = output.squeeze(0)

    return output
317
318


319
320
321
322
323
@_register_kernel_internal(resize, datapoints.Mask, datapoint_wrapper=False)
def _resize_mask_dispatch(
    inpt: datapoints.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.Mask:
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
324
    return datapoints.wrap(output, like=inpt)
325
326


327
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
328
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
329
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
330
331
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
332
333

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
334
        return bounding_boxes, canvas_size
335

336
337
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
338
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
339
    return (
340
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
341
342
        (new_height, new_width),
    )
343
344


345
346
347
348
349
350
351
@_register_kernel_internal(resize, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resize_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.BoundingBoxes:
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
352
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
353
354
355


@_register_kernel_internal(resize, datapoints.Video)
356
357
358
def resize_video(
    video: torch.Tensor,
    size: List[int],
359
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
360
    max_size: Optional[int] = None,
361
    antialias: Optional[Union[str, bool]] = "warn",
362
) -> torch.Tensor:
363
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
364
365


366
def affine(
367
    inpt: torch.Tensor,
368
369
370
371
372
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
373
    fill: _FillTypeJIT = None,
374
    center: Optional[List[float]] = None,
375
) -> torch.Tensor:
376
    if torch.jit.is_scripting():
377
        return affine_image(
378
            inpt,
379
            angle=angle,
380
381
382
383
384
385
386
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
401
402


403
def _affine_parse_args(
404
    angle: Union[int, float],
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

447
448
449
450
451
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
452
453
454
455

    return angle, translate, shear, center


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


552
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
553

554
555
556
557
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
574
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
575
576
577
578
579
580
581
582
583
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

584
585
586
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
587
588
589
590
591
592


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
593
    fill: _FillTypeJIT,
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


649
@_register_kernel_internal(affine, torch.Tensor)
650
@_register_kernel_internal(affine, datapoints.Image)
651
def affine_image(
652
    image: torch.Tensor,
653
    angle: Union[int, float],
654
655
656
    translate: List[float],
    scale: float,
    shear: List[float],
657
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
658
    fill: _FillTypeJIT = None,
659
660
    center: Optional[List[float]] = None,
) -> torch.Tensor:
661
662
    interpolation = _check_interpolation(interpolation)

663
664
    if image.numel() == 0:
        return image
665

666
    shape = image.shape
667
    ndim = image.ndim
668

669
670
671
672
673
674
675
676
677
678
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
679
680
681
682
683
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
684
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
685

686
    translate_f = [float(t) for t in translate]
687
688
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

689
690
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

691
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
692
693
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
694
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
695
696
697
698
699

    if needs_unsquash:
        output = output.reshape(shape)

    return output
700
701


702
@_register_kernel_internal(affine, PIL.Image.Image)
703
def _affine_image_pil(
704
    image: PIL.Image.Image,
705
    angle: Union[int, float],
706
707
708
    translate: List[float],
    scale: float,
    shear: List[float],
709
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
710
    fill: _FillTypeJIT = None,
711
712
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
713
    interpolation = _check_interpolation(interpolation)
714
715
716
717
718
719
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
720
        height, width = _get_size_image_pil(image)
721
722
723
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

724
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
725
726


727
728
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
729
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
730
    canvas_size: Tuple[int, int],
731
732
733
734
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
735
    center: Optional[List[float]] = None,
736
    expand: bool = False,
737
) -> Tuple[torch.Tensor, Tuple[int, int]]:
738
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
739
        return bounding_boxes, canvas_size
740
741
742
743
744
745
746
747
748

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
        convert_format_bounding_boxes(
            bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True
749
750
751
        )
    ).reshape(-1, 4)

752
753
754
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
755

756
    if center is None:
Philip Meier's avatar
Philip Meier committed
757
        height, width = canvas_size
758
759
        center = [width * 0.5, height * 0.5]

760
761
762
763
764
765
766
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
767
        .reshape(2, 3)
768
769
        .T
    )
770
771
772
773
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
774
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
775
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
776
    # 2) Now let's transform the points using affine matrix
777
    transformed_points = torch.matmul(points, transposed_affine_matrix)
778
779
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
780
    transformed_points = transformed_points.reshape(-1, 4, 2)
781
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
782
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
783
784
785
786

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
787
        height, width = canvas_size
788
789
790
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
791
792
793
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
794
795
796
797
            ],
            dtype=dtype,
            device=device,
        )
798
        new_points = torch.matmul(points, transposed_affine_matrix)
799
        tr = torch.amin(new_points, dim=0, keepdim=True)
800
        # Translate bounding boxes
801
        out_bboxes.sub_(tr.repeat((1, 2)))
802
803
        # Estimate meta-data for image with inverted=True and with center=[0,0]
        affine_vector = _get_inverse_affine_matrix([0.0, 0.0], angle, translate, scale, shear)
804
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
805
        canvas_size = (new_height, new_width)
806

Philip Meier's avatar
Philip Meier committed
807
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
808
    out_bboxes = convert_format_bounding_boxes(
809
810
811
812
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
813
    return out_bboxes, canvas_size
814
815


816
817
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
818
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
819
    canvas_size: Tuple[int, int],
820
    angle: Union[int, float],
821
822
823
824
825
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
826
827
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
828
        format=format,
Philip Meier's avatar
Philip Meier committed
829
        canvas_size=canvas_size,
830
831
832
833
834
835
836
837
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
838
839


840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
@_register_kernel_internal(affine, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _affine_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
860
    return datapoints.wrap(output, like=inpt)
861
862


863
864
def affine_mask(
    mask: torch.Tensor,
865
    angle: Union[int, float],
866
867
868
    translate: List[float],
    scale: float,
    shear: List[float],
869
    fill: _FillTypeJIT = None,
870
871
    center: Optional[List[float]] = None,
) -> torch.Tensor:
872
873
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
874
875
876
877
        needs_squeeze = True
    else:
        needs_squeeze = False

878
    output = affine_image(
879
        mask,
880
881
882
883
884
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
885
        fill=fill,
886
887
888
        center=center,
    )

889
890
891
892
893
    if needs_squeeze:
        output = output.squeeze(0)

    return output

894

895
896
897
898
899
900
901
@_register_kernel_internal(affine, datapoints.Mask, datapoint_wrapper=False)
def _affine_mask_dispatch(
    inpt: datapoints.Mask,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
902
    fill: _FillTypeJIT = None,
903
904
905
906
907
908
909
910
911
912
913
914
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
915
    return datapoints.wrap(output, like=inpt)
916
917
918


@_register_kernel_internal(affine, datapoints.Video)
919
920
921
922
923
924
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
925
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
926
    fill: _FillTypeJIT = None,
927
928
    center: Optional[List[float]] = None,
) -> torch.Tensor:
929
    return affine_image(
930
931
932
933
934
935
936
937
938
939
940
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


941
def rotate(
942
    inpt: torch.Tensor,
943
    angle: float,
944
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
945
    expand: bool = False,
946
    center: Optional[List[float]] = None,
947
948
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
949
    if torch.jit.is_scripting():
950
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
951

952
    _log_api_usage_once(rotate)
953

954
955
956
957
958
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
959
@_register_kernel_internal(rotate, datapoints.Image)
960
def rotate_image(
961
    image: torch.Tensor,
962
    angle: float,
963
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
964
965
    expand: bool = False,
    center: Optional[List[float]] = None,
966
    fill: _FillTypeJIT = None,
967
) -> torch.Tensor:
968
969
    interpolation = _check_interpolation(interpolation)

970
971
    shape = image.shape
    num_channels, height, width = shape[-3:]
972

973
974
    center_f = [0.0, 0.0]
    if center is not None:
975
        if expand:
976
            # TODO: Do we actually want to warn, or just document this?
977
            warnings.warn("The provided center argument has no effect on the result if expand is True")
978
979
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
980
981
982
983

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
984

985
    if image.numel() > 0:
986
987
988
989
990
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
991
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
992
993
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
994
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
995
996

        new_height, new_width = output.shape[-2:]
997
    else:
998
999
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
1000

1001
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
1002
1003


1004
@_register_kernel_internal(rotate, PIL.Image.Image)
1005
def _rotate_image_pil(
1006
    image: PIL.Image.Image,
1007
    angle: float,
1008
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1009
1010
    expand: bool = False,
    center: Optional[List[float]] = None,
1011
    fill: _FillTypeJIT = None,
1012
) -> PIL.Image.Image:
1013
1014
    interpolation = _check_interpolation(interpolation)

1015
    if center is not None and expand:
1016
        warnings.warn("The provided center argument has no effect on the result if expand is True")
1017

1018
    return _FP.rotate(
1019
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1020
1021
1022
    )


1023
1024
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1025
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1026
    canvas_size: Tuple[int, int],
1027
1028
1029
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1030
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1031
1032
1033
    if center is not None and expand:
        warnings.warn("The provided center argument has no effect on the result if expand is True")

1034
1035
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1036
        format=format,
Philip Meier's avatar
Philip Meier committed
1037
        canvas_size=canvas_size,
1038
1039
1040
1041
1042
1043
1044
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1045
1046


1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
@_register_kernel_internal(rotate, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _rotate_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
1059
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
1060
1061


1062
1063
def rotate_mask(
    mask: torch.Tensor,
1064
1065
1066
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1067
    fill: _FillTypeJIT = None,
1068
) -> torch.Tensor:
1069
1070
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1071
1072
1073
1074
        needs_squeeze = True
    else:
        needs_squeeze = False

1075
    output = rotate_image(
1076
        mask,
1077
1078
1079
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1080
        fill=fill,
1081
1082
1083
        center=center,
    )

1084
1085
1086
1087
1088
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1089

1090
1091
1092
1093
1094
1095
@_register_kernel_internal(rotate, datapoints.Mask, datapoint_wrapper=False)
def _rotate_mask_dispatch(
    inpt: datapoints.Mask,
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1096
    fill: _FillTypeJIT = None,
1097
1098
1099
    **kwargs,
) -> datapoints.Mask:
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
1100
    return datapoints.wrap(output, like=inpt)
1101
1102
1103


@_register_kernel_internal(rotate, datapoints.Video)
1104
1105
1106
def rotate_video(
    video: torch.Tensor,
    angle: float,
1107
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1108
1109
    expand: bool = False,
    center: Optional[List[float]] = None,
1110
    fill: _FillTypeJIT = None,
1111
) -> torch.Tensor:
1112
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1113
1114


1115
def pad(
1116
    inpt: torch.Tensor,
1117
1118
1119
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1120
) -> torch.Tensor:
1121
    if torch.jit.is_scripting():
1122
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1123

1124
    _log_api_usage_once(pad)
1125

1126
1127
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1128
1129


1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1152

1153

1154
@_register_kernel_internal(pad, torch.Tensor)
1155
@_register_kernel_internal(pad, datapoints.Image)
1156
def pad_image(
1157
    image: torch.Tensor,
1158
1159
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1160
1161
    padding_mode: str = "constant",
) -> torch.Tensor:
1162
1163
1164
1165
1166
    # Be aware that while `padding` has order `[left, top, right, bottom]` has order, `torch_padding` uses
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1167
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1168
1169
1170
1171
1172
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1173
    if fill is None:
1174
1175
1176
1177
1178
1179
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1180
    else:
1181
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1182
1183
1184


def _pad_with_scalar_fill(
1185
    image: torch.Tensor,
1186
1187
1188
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1189
) -> torch.Tensor:
1190
1191
    shape = image.shape
    num_channels, height, width = shape[-3:]
1192

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1216

1217
1218
1219
1220
1221
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1222
        image = _pad_symmetric(image, torch_padding)
1223
1224

    new_height, new_width = image.shape[-2:]
1225

1226
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1227
1228


1229
# TODO: This should be removed once torch_pad supports non-scalar padding values
1230
def _pad_with_vector_fill(
1231
    image: torch.Tensor,
1232
    torch_padding: List[int],
1233
    fill: List[float],
1234
    padding_mode: str,
1235
1236
1237
1238
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1239
1240
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1241
    fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1254
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1255
1256


1257
@_register_kernel_internal(pad, datapoints.Mask)
1258
1259
def pad_mask(
    mask: torch.Tensor,
1260
1261
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1262
1263
    padding_mode: str = "constant",
) -> torch.Tensor:
1264
1265
1266
    if fill is None:
        fill = 0

1267
    if isinstance(fill, (tuple, list)):
1268
1269
        raise ValueError("Non-scalar fill value is not supported")

1270
1271
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1272
1273
1274
1275
        needs_squeeze = True
    else:
        needs_squeeze = False

1276
    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1277
1278
1279
1280
1281

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1282
1283


1284
1285
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1286
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1287
    canvas_size: Tuple[int, int],
1288
    padding: List[int],
vfdev's avatar
vfdev committed
1289
    padding_mode: str = "constant",
1290
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1291
1292
1293
1294
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1295
    left, right, top, bottom = _parse_pad_padding(padding)
1296

1297
    if format == datapoints.BoundingBoxFormat.XYXY:
1298
1299
1300
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1301
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1302

Philip Meier's avatar
Philip Meier committed
1303
    height, width = canvas_size
1304
1305
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1306
    canvas_size = (height, width)
1307

Philip Meier's avatar
Philip Meier committed
1308
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1309
1310


1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
@_register_kernel_internal(pad, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _pad_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
1322
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
1323
1324
1325


@_register_kernel_internal(pad, datapoints.Video)
1326
1327
def pad_video(
    video: torch.Tensor,
1328
1329
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1330
1331
    padding_mode: str = "constant",
) -> torch.Tensor:
1332
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
1333
1334


1335
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1336
    if torch.jit.is_scripting():
1337
        return crop_image(inpt, top=top, left=left, height=height, width=width)
1338
1339

    _log_api_usage_once(crop)
1340

1341
1342
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1343

1344
1345

@_register_kernel_internal(crop, torch.Tensor)
1346
@_register_kernel_internal(crop, datapoints.Image)
1347
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1365
1366
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
1367
1368


1369
1370
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1371
    format: datapoints.BoundingBoxFormat,
1372
1373
    top: int,
    left: int,
1374
1375
1376
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1377

1378
    # Crop or implicit pad if left and/or top have negative values:
1379
    if format == datapoints.BoundingBoxFormat.XYXY:
1380
        sub = [left, top, left, top]
1381
    else:
1382
1383
        sub = [left, top, 0, 0]

1384
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1385
    canvas_size = (height, width)
1386

Philip Meier's avatar
Philip Meier committed
1387
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1388
1389


1390
1391
1392
1393
1394
1395
1396
@_register_kernel_internal(crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int
) -> datapoints.BoundingBoxes:
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
1397
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
1398
1399
1400


@_register_kernel_internal(crop, datapoints.Mask)
1401
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1402
1403
1404
1405
1406
1407
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

1408
    output = crop_image(mask, top, left, height, width)
1409
1410
1411
1412
1413

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1414
1415


1416
@_register_kernel_internal(crop, datapoints.Video)
1417
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1418
    return crop_image(video, top, left, height, width)
1419
1420


1421
def perspective(
1422
    inpt: torch.Tensor,
1423
1424
1425
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1426
    fill: _FillTypeJIT = None,
1427
    coefficients: Optional[List[float]] = None,
1428
) -> torch.Tensor:
1429
    if torch.jit.is_scripting():
1430
        return perspective_image(
1431
1432
1433
1434
1435
1436
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1437
        )
1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1467
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1468
    base_grid[..., 0].copy_(x_grid)
1469
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1470
1471
1472
1473
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1474
1475
1476
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1477
1478
1479
1480
1481

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1499
@_register_kernel_internal(perspective, torch.Tensor)
1500
@_register_kernel_internal(perspective, datapoints.Image)
1501
def perspective_image(
1502
    image: torch.Tensor,
1503
1504
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1505
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1506
    fill: _FillTypeJIT = None,
1507
    coefficients: Optional[List[float]] = None,
1508
) -> torch.Tensor:
1509
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1510
1511
    interpolation = _check_interpolation(interpolation)

1512
1513
1514
1515
    if image.numel() == 0:
        return image

    shape = image.shape
1516
    ndim = image.ndim
1517

1518
    if ndim > 4:
1519
        image = image.reshape((-1,) + shape[-3:])
1520
        needs_unsquash = True
1521
1522
1523
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1524
1525
1526
    else:
        needs_unsquash = False

1527
    _assert_grid_transform_inputs(
1528
1529
1530
1531
1532
1533
1534
1535
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1536
    oh, ow = shape[-2:]
1537
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1538
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1539
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1540
1541

    if needs_unsquash:
1542
        output = output.reshape(shape)
1543
1544

    return output
1545
1546


1547
@_register_kernel_internal(perspective, PIL.Image.Image)
1548
def _perspective_image_pil(
1549
    image: PIL.Image.Image,
1550
1551
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1552
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BICUBIC,
1553
    fill: _FillTypeJIT = None,
1554
    coefficients: Optional[List[float]] = None,
1555
) -> PIL.Image.Image:
1556
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1557
    interpolation = _check_interpolation(interpolation)
1558
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1559
1560


1561
1562
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1563
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1564
    canvas_size: Tuple[int, int],
1565
1566
1567
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1568
) -> torch.Tensor:
1569
1570
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1571

1572
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1573

1574
1575
1576
1577
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1578
    ).reshape(-1, 4)
1579

1580
1581
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1613
1614
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1615
1616
1617
1618
        dtype=dtype,
        device=device,
    )

1619
1620
1621
1622
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1623
1624
1625
1626
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1627
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1628
1629
1630
1631
1632
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1633
1634
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1635
    transformed_points = numer_points.div_(denom_points)
1636
1637
1638

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1639
    transformed_points = transformed_points.reshape(-1, 4, 2)
1640
1641
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1642
1643
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1644
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1645
        canvas_size=canvas_size,
1646
    )
1647
1648
1649

    # out_bboxes should be of shape [N boxes, 4]

1650
    return convert_format_bounding_boxes(
1651
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1652
    ).reshape(original_shape)
1653
1654


1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
@_register_kernel_internal(perspective, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _perspective_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
1671
    return datapoints.wrap(output, like=inpt)
1672
1673


1674
1675
def perspective_mask(
    mask: torch.Tensor,
1676
1677
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1678
    fill: _FillTypeJIT = None,
1679
    coefficients: Optional[List[float]] = None,
1680
) -> torch.Tensor:
1681
1682
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1683
1684
1685
1686
        needs_squeeze = True
    else:
        needs_squeeze = False

1687
    output = perspective_image(
1688
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1689
    )
1690

1691
1692
1693
1694
1695
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1696

1697
1698
1699
1700
1701
@_register_kernel_internal(perspective, datapoints.Mask, datapoint_wrapper=False)
def _perspective_mask_dispatch(
    inpt: datapoints.Mask,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1702
    fill: _FillTypeJIT = None,
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
1713
    return datapoints.wrap(output, like=inpt)
1714
1715
1716


@_register_kernel_internal(perspective, datapoints.Video)
1717
1718
def perspective_video(
    video: torch.Tensor,
1719
1720
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1721
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1722
    fill: _FillTypeJIT = None,
1723
    coefficients: Optional[List[float]] = None,
1724
) -> torch.Tensor:
1725
    return perspective_image(
1726
1727
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1728
1729


1730
def elastic(
1731
    inpt: torch.Tensor,
1732
    displacement: torch.Tensor,
1733
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1734
1735
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
1736
    if torch.jit.is_scripting():
1737
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1738
1739
1740
1741
1742

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1743
1744


1745
1746
1747
elastic_transform = elastic


1748
@_register_kernel_internal(elastic, torch.Tensor)
1749
@_register_kernel_internal(elastic, datapoints.Image)
1750
def elastic_image(
1751
    image: torch.Tensor,
1752
    displacement: torch.Tensor,
1753
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1754
    fill: _FillTypeJIT = None,
1755
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1756
1757
1758
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1759
1760
    interpolation = _check_interpolation(interpolation)

1761
1762
1763
1764
    if image.numel() == 0:
        return image

    shape = image.shape
1765
    ndim = image.ndim
1766

1767
    device = image.device
1768
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1769
1770
1771
1772
1773
1774
1775

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1776
1777
1778
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1779

1780
1781
1782
1783
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1784
    if ndim > 4:
1785
        image = image.reshape((-1,) + shape[-3:])
1786
        needs_unsquash = True
1787
1788
1789
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1790
1791
1792
    else:
        needs_unsquash = False

1793
1794
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1795

1796
1797
1798
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1799
1800

    if needs_unsquash:
1801
        output = output.reshape(shape)
1802

1803
1804
1805
    if is_cpu_half:
        output = output.to(torch.float16)

1806
    return output
1807
1808


1809
@_register_kernel_internal(elastic, PIL.Image.Image)
1810
def _elastic_image_pil(
1811
    image: PIL.Image.Image,
1812
    displacement: torch.Tensor,
1813
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1814
    fill: _FillTypeJIT = None,
1815
) -> PIL.Image.Image:
1816
    t_img = pil_to_tensor(image)
1817
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
1818
    return to_pil_image(output, mode=image.mode)
1819
1820


1821
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1822
    sy, sx = size
1823
1824
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1825
1826
    base_grid[..., 0].copy_(x_grid)

1827
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1828
1829
1830
1831
1832
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1833
1834
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1835
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1836
    canvas_size: Tuple[int, int],
1837
1838
    displacement: torch.Tensor,
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1839
1840
1841
1842
1843
1844
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1845
1846
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1847

1848
    # TODO: add in docstring about approximation we are doing for grid inversion
1849
1850
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1851
1852
1853

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1854

1855
1856
1857
1858
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1859
    ).reshape(-1, 4)
1860

Philip Meier's avatar
Philip Meier committed
1861
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1862
1863
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1864
    inv_grid = id_grid.sub_(displacement)
1865
1866

    # Get points from bboxes
1867
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1868
1869
1870
1871
1872
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1873
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1874
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1875
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1876

1877
    transformed_points = transformed_points.reshape(-1, 4, 2)
1878
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1879
1880
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1881
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1882
        canvas_size=canvas_size,
1883
    )
1884

1885
    return convert_format_bounding_boxes(
1886
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1887
    ).reshape(original_shape)
1888
1889


1890
1891
1892
1893
1894
1895
1896
@_register_kernel_internal(elastic, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _elastic_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> datapoints.BoundingBoxes:
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
1897
    return datapoints.wrap(output, like=inpt)
1898
1899


1900
1901
1902
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1903
    fill: _FillTypeJIT = None,
1904
) -> torch.Tensor:
1905
1906
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1907
1908
1909
1910
        needs_squeeze = True
    else:
        needs_squeeze = False

1911
    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1912
1913
1914
1915
1916

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1917
1918


1919
1920
@_register_kernel_internal(elastic, datapoints.Mask, datapoint_wrapper=False)
def _elastic_mask_dispatch(
1921
    inpt: datapoints.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
1922
1923
) -> datapoints.Mask:
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
1924
    return datapoints.wrap(output, like=inpt)
1925
1926
1927


@_register_kernel_internal(elastic, datapoints.Video)
1928
1929
1930
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1931
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1932
    fill: _FillTypeJIT = None,
1933
) -> torch.Tensor:
1934
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
1935
1936


1937
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1938
    if torch.jit.is_scripting():
1939
        return center_crop_image(inpt, output_size=output_size)
1940
1941
1942
1943
1944

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1945
1946


1947
1948
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1949
1950
        s = int(output_size)
        return [s, s]
1951
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1952
        return [output_size[0], output_size[0]]
1953
1954
    else:
        return list(output_size)
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1974
@_register_kernel_internal(center_crop, torch.Tensor)
1975
@_register_kernel_internal(center_crop, datapoints.Image)
1976
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1977
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1978
1979
1980
1981
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1982
1983
1984

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1985
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1986

1987
        image_height, image_width = image.shape[-2:]
1988
        if crop_width == image_width and crop_height == image_height:
1989
            return image
1990
1991

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1992
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1993
1994


1995
@_register_kernel_internal(center_crop, PIL.Image.Image)
1996
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1997
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1998
    image_height, image_width = _get_size_image_pil(image)
1999
2000
2001

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
2002
        image = _pad_image_pil(image, padding_ltrb, fill=0)
2003

2004
        image_height, image_width = _get_size_image_pil(image)
2005
        if crop_width == image_width and crop_height == image_height:
2006
            return image
2007
2008

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2009
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2010
2011


2012
2013
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2014
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2015
    canvas_size: Tuple[int, int],
2016
    output_size: List[int],
2017
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2018
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2019
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2020
2021
2022
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2023
2024


2025
2026
2027
2028
2029
2030
2031
@_register_kernel_internal(center_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _center_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, output_size: List[int]
) -> datapoints.BoundingBoxes:
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
2032
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
2033
2034
2035


@_register_kernel_internal(center_crop, datapoints.Mask)
2036
2037
2038
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2039
2040
2041
2042
        needs_squeeze = True
    else:
        needs_squeeze = False

2043
    output = center_crop_image(image=mask, output_size=output_size)
2044
2045
2046
2047
2048

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2049
2050


2051
@_register_kernel_internal(center_crop, datapoints.Video)
2052
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
2053
    return center_crop_image(video, output_size)
2054
2055


2056
def resized_crop(
2057
    inpt: torch.Tensor,
2058
2059
2060
2061
2062
2063
2064
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
2065
) -> torch.Tensor:
2066
    if torch.jit.is_scripting():
2067
        return resized_crop_image(
2068
2069
2070
2071
2072
2073
2074
2075
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2076
        )
2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2091

2092
2093

@_register_kernel_internal(resized_crop, torch.Tensor)
2094
@_register_kernel_internal(resized_crop, datapoints.Image)
2095
def resized_crop_image(
2096
    image: torch.Tensor,
2097
2098
2099
2100
2101
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2102
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2103
    antialias: Optional[Union[str, bool]] = "warn",
2104
) -> torch.Tensor:
2105
2106
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)
2107
2108


2109
def _resized_crop_image_pil(
2110
    image: PIL.Image.Image,
2111
2112
2113
2114
2115
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2116
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2117
) -> PIL.Image.Image:
2118
2119
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)
2120
2121


2122
@_register_kernel_internal(resized_crop, PIL.Image.Image)
2123
def _resized_crop_image_pil_dispatch(
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
2135
    return _resized_crop_image_pil(
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2146
2147
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2148
    format: datapoints.BoundingBoxFormat,
2149
2150
2151
2152
2153
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2154
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


@_register_kernel_internal(resized_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resized_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
2166
    return datapoints.wrap(output, like=inpt, canvas_size=canvas_size)
2167
2168


2169
def resized_crop_mask(
2170
2171
2172
2173
2174
2175
2176
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2177
2178
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2179
2180


2181
2182
2183
2184
2185
2186
2187
@_register_kernel_internal(resized_crop, datapoints.Mask, datapoint_wrapper=False)
def _resized_crop_mask_dispatch(
    inpt: datapoints.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.Mask:
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
2188
    return datapoints.wrap(output, like=inpt)
2189
2190
2191


@_register_kernel_internal(resized_crop, datapoints.Video)
2192
2193
2194
2195
2196
2197
2198
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2199
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2200
    antialias: Optional[Union[str, bool]] = "warn",
2201
) -> torch.Tensor:
2202
    return resized_crop_image(
2203
2204
2205
2206
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2207
def five_crop(
2208
2209
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2210
    if torch.jit.is_scripting():
2211
        return five_crop_image(inpt, size=size)
2212
2213
2214
2215
2216

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2217
2218


2219
2220
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2221
2222
        s = int(size)
        size = [s, s]
2223
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2224
2225
        s = size[0]
        size = [s, s]
2226
2227
2228
2229
2230
2231
2232

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2233
2234
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(five_crop, datapoints.Image)
2235
def five_crop_image(
2236
    image: torch.Tensor, size: List[int]
2237
2238
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2239
    image_height, image_width = image.shape[-2:]
2240
2241

    if crop_width > image_width or crop_height > image_height:
2242
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2243

2244
2245
2246
2247
2248
    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])
2249
2250
2251
2252

    return tl, tr, bl, br, center


2253
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2254
def _five_crop_image_pil(
2255
    image: PIL.Image.Image, size: List[int]
2256
2257
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
2258
    image_height, image_width = _get_size_image_pil(image)
2259
2260

    if crop_width > image_width or crop_height > image_height:
2261
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2262

2263
2264
2265
2266
2267
    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])
2268
2269
2270
2271

    return tl, tr, bl, br, center


2272
@_register_five_ten_crop_kernel_internal(five_crop, datapoints.Video)
2273
2274
2275
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2276
    return five_crop_image(video, size)
2277
2278


2279
def ten_crop(
2280
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2281
) -> Tuple[
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2292
]:
2293
    if torch.jit.is_scripting():
2294
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
2295
2296
2297
2298
2299

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2300
2301


2302
2303
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(ten_crop, datapoints.Image)
2304
def ten_crop_image(
Philip Meier's avatar
Philip Meier committed
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2318
    non_flipped = five_crop_image(image, size)
2319
2320

    if vertical_flip:
2321
        image = vertical_flip_image(image)
2322
    else:
2323
        image = horizontal_flip_image(image)
2324

2325
    flipped = five_crop_image(image, size)
2326

Philip Meier's avatar
Philip Meier committed
2327
    return non_flipped + flipped
2328
2329


2330
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
2331
def _ten_crop_image_pil(
Philip Meier's avatar
Philip Meier committed
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
2345
    non_flipped = _five_crop_image_pil(image, size)
2346
2347

    if vertical_flip:
2348
        image = _vertical_flip_image_pil(image)
2349
    else:
2350
        image = _horizontal_flip_image_pil(image)
2351

2352
    flipped = _five_crop_image_pil(image, size)
Philip Meier's avatar
Philip Meier committed
2353
2354
2355
2356

    return non_flipped + flipped


2357
@_register_five_ten_crop_kernel_internal(ten_crop, datapoints.Video)
Philip Meier's avatar
Philip Meier committed
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2372
    return ten_crop_image(video, size, vertical_flip=vertical_flip)