test_ops.py 44.4 KB
Newer Older
1
from common_utils import needs_cuda, cpu_only, cpu_and_gpu
2
from _assert_utils import assert_equal
3
import math
4
from abc import ABC, abstractmethod
5
import pytest
6

7
import numpy as np
8

9
import torch
10
from functools import lru_cache
11
from torch import Tensor
12
from torch.autograd import gradcheck
13
from torch.nn.modules.utils import _pair
14
from torchvision import ops
15
from typing import Tuple
16
17


18
19
class RoIOpTester(ABC):
    dtype = torch.float64
20

21
22
23
    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('contiguous', (True, False))
    def test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
24
25
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
26
27
28
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
29
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
30
31
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
32
33
34
35
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
36
                            dtype=rois_dtype, device=device)
37

38
        pool_h, pool_w = pool_size, pool_size
39
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
40
        # the following should be true whether we're running an autocast test or not.
41
        assert y.dtype == x.dtype
42
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
43
                                sampling_ratio=-1, device=device, dtype=self.dtype, **kwargs)
44

45
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
46
        torch.testing.assert_close(gt_y.to(y), y, rtol=tol, atol=tol)
47

48
49
50
    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('contiguous', (True, False))
    def test_backward(self, device, contiguous):
51
52
53
54
55
56
57
58
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
59

60
61
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
62

63
        script_func = self.get_script_fn(rois, pool_size)
64

65
66
        gradcheck(func, (x,))
        gradcheck(script_func, (x,))
67

68
69
70
71
72
73
    @needs_cuda
    @pytest.mark.parametrize('x_dtype', (torch.float, torch.half))
    @pytest.mark.parametrize('rois_dtype', (torch.float, torch.half))
    def test_autocast(self, x_dtype, rois_dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)
74
75
76

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
77
        with pytest.raises(AssertionError):
78
79
80
81
82
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
83
        with pytest.raises(AssertionError):
84
85
86
87
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

88
    @abstractmethod
89
90
    def fn(*args, **kwargs):
        pass
91

92
    @abstractmethod
93
94
    def get_script_fn(*args, **kwargs):
        pass
95

96
    @abstractmethod
97
98
    def expected_fn(*args, **kwargs):
        pass
99

100

101
class TestRoiPool(RoIOpTester):
102
103
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
104

105
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
106
107
        scriped = torch.jit.script(ops.roi_pool)
        return lambda x: scriped(x, rois, pool_size)
108

109
110
111
112
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
113

114
115
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
116

117
118
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
119

120
121
122
123
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
124

125
126
127
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
128

129
130
131
132
133
134
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
135

136
137
    @cpu_only
    def test_boxes_shape(self):
138
139
        self._helper_boxes_shape(ops.roi_pool)

140

141
class TestPSRoIPool(RoIOpTester):
142
143
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
144

145
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
146
147
        scriped = torch.jit.script(ops.ps_roi_pool)
        return lambda x: scriped(x, rois, pool_size)
148

149
150
151
152
153
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
154
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
180

181
182
    @cpu_only
    def test_boxes_shape(self):
183
184
        self._helper_boxes_shape(ops.ps_roi_pool)

185

186
187
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
188

189
190
191
192
193
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
194

195
196
197
198
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
199

200
201
202
203
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
204

205
206
    wy_h = y - y_low
    wx_h = x - x_low
207
    wy_l = 1 - wy_h
208
    wx_l = 1 - wx_h
209

210
    val = 0
211
212
213
214
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
215
    return val
216
217


218
class TestRoIAlign(RoIOpTester):
AhnDW's avatar
AhnDW committed
219
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
220
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
221
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
222

223
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
224
225
        scriped = torch.jit.script(ops.roi_align)
        return lambda x: scriped(x, rois, pool_size)
226

AhnDW's avatar
AhnDW committed
227
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
228
                    device=None, dtype=torch.float64):
229
230
        if device is None:
            device = torch.device("cpu")
231
232
233
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
234
235
        offset = 0.5 if aligned else 0.

236
237
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
238
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
259
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
260
261
262
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
263
264
        return out_data

265
266
    @cpu_only
    def test_boxes_shape(self):
267
268
        self._helper_boxes_shape(ops.roi_align)

269
270
271
272
273
274
    @pytest.mark.parametrize('aligned', (True, False))
    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('contiguous', (True, False))
    def test_forward(self, device, contiguous, aligned, x_dtype=None, rois_dtype=None):
        super().test_forward(device=device, contiguous=contiguous, x_dtype=x_dtype, rois_dtype=rois_dtype,
                             aligned=aligned)
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @needs_cuda
    @pytest.mark.parametrize('aligned', (True, False))
    @pytest.mark.parametrize('x_dtype', (torch.float, torch.half))
    @pytest.mark.parametrize('rois_dtype', (torch.float, torch.half))
    def test_autocast(self, aligned, x_dtype, rois_dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, aligned=aligned, x_dtype=x_dtype,
                              rois_dtype=rois_dtype)

    def _make_rois(self, img_size, num_imgs, dtype, num_rois=1000):
        rois = torch.randint(0, img_size // 2, size=(num_rois, 5)).to(dtype)
        rois[:, 0] = torch.randint(0, num_imgs, size=(num_rois,))  # set batch index
        rois[:, 3:] += rois[:, 1:3]  # make sure boxes aren't degenerate
        return rois

    @pytest.mark.parametrize('aligned', (True, False))
    @pytest.mark.parametrize('scale, zero_point', ((1, 0), (2, 10), (0.1, 50)))
    @pytest.mark.parametrize('qdtype', (torch.qint8, torch.quint8, torch.qint32))
    def test_qroialign(self, aligned, scale, zero_point, qdtype):
295
296
297
298
299
300
301
        """Make sure quantized version of RoIAlign is close to float version"""
        pool_size = 5
        img_size = 10
        n_channels = 2
        num_imgs = 1
        dtype = torch.float

302
303
304
305
306
307
308
        x = torch.randint(50, 100, size=(num_imgs, n_channels, img_size, img_size)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=scale, zero_point=zero_point, dtype=qdtype)

        rois = self._make_rois(img_size, num_imgs, dtype)
        qrois = torch.quantize_per_tensor(rois, scale=scale, zero_point=zero_point, dtype=qdtype)

        x, rois = qx.dequantize(), qrois.dequantize()  # we want to pass the same inputs
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        y = ops.roi_align(
            x,
            rois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )
        qy = ops.roi_align(
            qx,
            qrois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )

        # The output qy is itself a quantized tensor and there might have been a loss of info when it was
        # quantized. For a fair comparison we need to quantize y as well
        quantized_float_y = torch.quantize_per_tensor(y, scale=scale, zero_point=zero_point, dtype=qdtype)

        try:
            # Ideally, we would assert this, which passes with (scale, zero) == (1, 0)
            assert (qy == quantized_float_y).all()
        except AssertionError:
            # But because the computation aren't exactly the same between the 2 RoIAlign procedures, some
            # rounding error may lead to a difference of 2 in the output.
            # For example with (scale, zero) = (2, 10), 45.00000... will be quantized to 44
            # but 45.00000001 will be rounded to 46. We make sure below that:
            # - such discrepancies between qy and quantized_float_y are very rare (less then 5%)
            # - any difference between qy and quantized_float_y is == scale
            diff_idx = torch.where(qy != quantized_float_y)
            num_diff = diff_idx[0].numel()
            assert num_diff / qy.numel() < .05

            abs_diff = torch.abs(qy[diff_idx].dequantize() - quantized_float_y[diff_idx].dequantize())
            t_scale = torch.full_like(abs_diff, fill_value=scale)
            torch.testing.assert_close(abs_diff, t_scale, rtol=1e-5, atol=1e-5)

    def test_qroi_align_multiple_images(self):
        dtype = torch.float
351
352
        x = torch.randint(50, 100, size=(2, 3, 10, 10)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=1, zero_point=0, dtype=torch.qint8)
353
        rois = self._make_rois(img_size=10, num_imgs=2, dtype=dtype, num_rois=10)
354
        qrois = torch.quantize_per_tensor(rois, scale=1, zero_point=0, dtype=torch.qint8)
355
356
        with pytest.raises(RuntimeError, match="Only one image per batch is allowed"):
            ops.roi_align(qx, qrois, output_size=5)
357

358

359
class TestPSRoIAlign(RoIOpTester):
360
361
362
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
363

364
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
365
366
        scriped = torch.jit.script(ops.ps_roi_align)
        return lambda x: scriped(x, rois, pool_size)
367

368
369
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
370
371
        if device is None:
            device = torch.device("cpu")
372
        n_input_channels = in_data.size(1)
373
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
400
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
401
402
403
404
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
405

406
407
    @cpu_only
    def test_boxes_shape(self):
408
409
        self._helper_boxes_shape(ops.ps_roi_align)

410

411
412
@cpu_only
class TestMultiScaleRoIAlign:
413
414
415
416
417
418
419
420
421
422
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
423
        assert repr(t) == expected_string
424
425


426
427
class TestNMS:
    def _reference_nms(self, boxes, scores, iou_threshold):
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

450
451
452
453
454
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
455
456
457
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
458
        boxes = torch.rand(N, 4) * 100
459
460
461
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
462
        iou_thresh += 1e-5
463
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
464
465
466
        scores = torch.rand(N)
        return boxes, scores

467
468
469
    @cpu_only
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    def test_nms_ref(self, iou):
470
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        keep_ref = self._reference_nms(boxes, scores, iou)
        keep = ops.nms(boxes, scores, iou)
        assert torch.allclose(keep, keep_ref), err_msg.format(iou)

    @cpu_only
    def test_nms_input_errors(self):
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(4), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 5), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(3, 2), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(4), 0.5)

    @cpu_only
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10)))
    def test_qnms(self, iou, scale, zero_point):
491
492
493
494
        # Note: we compare qnms vs nms instead of qnms vs reference implementation.
        # This is because with the int convertion, the trick used in _create_tensors_with_iou
        # doesn't really work (in fact, nms vs reference implem will also fail with ints)
        err_msg = 'NMS and QNMS give different results for IoU={}'
495
496
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        scores *= 100  # otherwise most scores would be 0 or 1 after int convertion
497

498
499
        qboxes = torch.quantize_per_tensor(boxes, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        qscores = torch.quantize_per_tensor(scores, scale=scale, zero_point=zero_point, dtype=torch.quint8)
500

501
502
        boxes = qboxes.dequantize()
        scores = qscores.dequantize()
503

504
505
        keep = ops.nms(boxes, scores, iou)
        qkeep = ops.nms(qboxes, qscores, iou)
506

507
        assert torch.allclose(qkeep, keep), err_msg.format(iou)
508

509
510
511
    @needs_cuda
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    def test_nms_cuda(self, iou, dtype=torch.float64):
512
        tol = 1e-3 if dtype is torch.half else 1e-5
513
514
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        r_cpu = ops.nms(boxes, scores, iou)
        r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

        is_eq = torch.allclose(r_cpu, r_cuda.cpu())
        if not is_eq:
            # if the indices are not the same, ensure that it's because the scores
            # are duplicate
            is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
        assert is_eq, err_msg.format(iou)

    @needs_cuda
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
    def test_autocast(self, iou, dtype):
        with torch.cuda.amp.autocast():
            self.test_nms_cuda(iou=iou, dtype=dtype)

    @needs_cuda
534
535
536
537
538
539
540
541
542
    def test_nms_cuda_float16(self):
        boxes = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                              [285.1472, 188.7374, 1192.4984, 851.0669],
                              [279.2440, 197.9812, 1189.4746, 849.2019]]).cuda()
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
543
        assert_equal(keep32, keep16)
544

545
    @cpu_only
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    def test_batched_nms_implementations(self):
        """Make sure that both implementations of batched_nms yield identical results"""

        num_boxes = 1000
        iou_threshold = .9

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

561
562
563
        torch.testing.assert_close(
            keep_vanilla, keep_trick, msg="The vanilla and the trick implementation yield different nms outputs."
        )
564
565
566

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
567
        torch.testing.assert_close(empty, ops.batched_nms(empty, None, None, None))
568

569

570
571
572
class TestDeformConv:
    dtype = torch.float64

573
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
604
605
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
606
607
608
609

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

610
611
612
613
614
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
615
616
617
618
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

619
    @lru_cache(maxsize=None)
620
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

639
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
640
641

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
642
                             device=device, dtype=dtype, requires_grad=True)
643

644
645
646
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

647
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
648
                             device=device, dtype=dtype, requires_grad=True)
649

650
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
651
652
653
654

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
655
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
656
657
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

658
        return x, weight, offset, mask, bias, stride, pad, dilation
659

660
661
662
663
664
    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('contiguous', (True, False))
    @pytest.mark.parametrize('batch_sz', (0, 33))
    def test_forward(self, device, contiguous, batch_sz, dtype=None):
        dtype = dtype or self.dtype
665
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
666
667
668
669
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
670
        tol = 2e-3 if dtype is torch.half else 1e-5
671
672

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
673
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
674
        res = layer(x, offset, mask)
675
676
677

        weight = layer.weight.data
        bias = layer.bias.data
678
679
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

680
681
682
        torch.testing.assert_close(
            res.to(expected), expected, rtol=tol, atol=tol, msg='\nres:\n{}\nexpected:\n{}'.format(res, expected)
        )
683
684
685
686

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
687

688
689
690
        torch.testing.assert_close(
            res.to(expected), expected, rtol=tol, atol=tol, msg='\nres:\n{}\nexpected:\n{}'.format(res, expected)
        )
691

692
693
694
695
696
697
698
699
700
701
702
    @cpu_only
    def test_wrong_sizes(self):
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args('cpu', contiguous=True,
                                                                            batch_sz=10, dtype=self.dtype)
        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
                                 dilation=dilation, groups=groups)
        with pytest.raises(RuntimeError, match="the shape of the offset"):
703
            wrong_offset = torch.rand_like(offset[:, :2])
704
            layer(x, wrong_offset)
705

706
        with pytest.raises(RuntimeError, match=r'mask.shape\[1\] is not valid'):
707
            wrong_mask = torch.rand_like(mask[:, :2])
708
            layer(x, offset, wrong_mask)
709

710
711
712
713
    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('contiguous', (True, False))
    @pytest.mark.parametrize('batch_sz', (0, 33))
    def test_backward(self, device, contiguous, batch_sz):
714
715
716
717
718
719
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
720

721
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5, fast_mode=True)
722
723
724
725
726

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

727
        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5, fast_mode=True)
728
729
730
731
732
733

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
734

735
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
736
                  (x, offset, mask, weight, bias), nondet_tol=1e-5, fast_mode=True)
737
738

        @torch.jit.script
739
740
741
742
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
743

744
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
745
                  (x, offset, weight, bias), nondet_tol=1e-5, fast_mode=True)
746

747
748
749
    @needs_cuda
    @pytest.mark.parametrize('contiguous', (True, False))
    def test_compare_cpu_cuda_grads(self, contiguous):
750
751
752
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only

753
754
        # compare grads computed on CUDA with grads computed on CPU
        true_cpu_grads = None
755

756
757
758
759
        init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
        img = torch.randn(8, 9, 1000, 110)
        offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
        mask = torch.rand(8, 3 * 3, 1000, 110)
760

761
762
763
764
765
766
767
        if not contiguous:
            img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
        else:
            weight = init_weight
768

769
        for d in ["cpu", "cuda"]:
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
            out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
            out.mean().backward()
            if true_cpu_grads is None:
                true_cpu_grads = init_weight.grad
                assert true_cpu_grads is not None
            else:
                assert init_weight.grad is not None
                res_grads = init_weight.grad.to("cpu")
                torch.testing.assert_close(true_cpu_grads, res_grads)

    @needs_cuda
    @pytest.mark.parametrize('batch_sz', (0, 33))
    @pytest.mark.parametrize('dtype', (torch.float, torch.half))
    def test_autocast(self, batch_sz, dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, batch_sz=batch_sz, dtype=dtype)


@cpu_only
class TestFrozenBNT:
791
792
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
793
794
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
795
796

        # Check integrity of object __repr__ attribute
797
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
798
        assert repr(t) == expected_string
799

800
801
802
803
804
805
806
807
808
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

809
        # Check that default eps is equal to the one of BN
810
811
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
812
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
813
814
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
815
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
816
817
818
819
820
821

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
822
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
823
824
825
826

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
827
828
        with pytest.warns(DeprecationWarning):
            ops.misc.FrozenBatchNorm2d(32, eps=1e-5, n=32)
829

830

831
832
@cpu_only
class TestBoxConversion:
833
834
835
836
837
838
839
840
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

841
842
    @pytest.mark.parametrize('box_sequence', _get_box_sequences())
    def test_check_roi_boxes_shape(self, box_sequence):
843
        # Ensure common sequences of tensors are supported
844
        ops._utils.check_roi_boxes_shape(box_sequence)
845

846
847
    @pytest.mark.parametrize('box_sequence', _get_box_sequences())
    def test_convert_boxes_to_roi_format(self, box_sequence):
848
849
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
850
851
852
853
        if ref_tensor is None:
            ref_tensor = box_sequence
        else:
            assert_equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence))
854
855


856
857
@cpu_only
class TestBox:
858
859
860
861
862
863
864
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

865
866
867
868
        assert exp_xyxy.size() == torch.Size([4, 4])
        assert_equal(ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh"), exp_xyxy)
869
870
871
872
873
874
875
876
877

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

878
        assert exp_xywh.size() == torch.Size([4, 4])
879
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
880
        assert_equal(box_xywh, exp_xywh)
881
882
883

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
884
        assert_equal(box_xyxy, box_tensor)
885
886
887
888
889
890
891
892
893

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

894
        assert exp_cxcywh.size() == torch.Size([4, 4])
895
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
896
        assert_equal(box_cxcywh, exp_cxcywh)
897
898
899

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
900
        assert_equal(box_xyxy, box_tensor)
901
902
903
904
905
906
907
908
909

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

910
        assert exp_cxcywh.size() == torch.Size([4, 4])
911
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
912
        assert_equal(box_cxcywh, exp_cxcywh)
913
914
915

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
916
        assert_equal(box_xywh, box_tensor)
917

918
919
920
    @pytest.mark.parametrize('inv_infmt', ["xwyh", "cxwyh"])
    @pytest.mark.parametrize('inv_outfmt', ["xwcx", "xhwcy"])
    def test_bbox_invalid(self, inv_infmt, inv_outfmt):
921
922
923
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

924
925
        with pytest.raises(ValueError):
            ops.box_convert(box_tensor, inv_infmt, inv_outfmt)
926
927
928
929

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
930

931
932
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
933

934
935
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
936
        torch.testing.assert_close(scripted_xywh, box_xywh, rtol=0.0, atol=TOLERANCE)
937

938
939
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
940
        torch.testing.assert_close(scripted_cxcywh, box_cxcywh, rtol=0.0, atol=TOLERANCE)
941
942


943
944
@cpu_only
class TestBoxArea:
Aditya Oke's avatar
Aditya Oke committed
945
    def test_box_area(self):
946
947
        def area_check(box, expected, tolerance=1e-4):
            out = ops.box_area(box)
948
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

        # Check for int boxes
        for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
            box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
            expected = torch.tensor([10000, 0])
            area_check(box_tensor, expected)

        # Check for float32 and float64 boxes
        for dtype in [torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=torch.float64)
            area_check(box_tensor, expected, tolerance=0.05)

        # Check for float16 box
        box_tensor = torch.tensor([[285.25, 185.625, 1194.0, 851.5],
                                   [285.25, 188.75, 1192.0, 851.0],
                                   [279.25, 198.0, 1189.0, 849.0]], dtype=torch.float16)
        expected = torch.tensor([605113.875, 600495.1875, 592247.25])
        area_check(box_tensor, expected)
Aditya Oke's avatar
Aditya Oke committed
970
971


972
973
@cpu_only
class TestBoxIou:
Aditya Oke's avatar
Aditya Oke committed
974
    def test_iou(self):
975
976
        def iou_check(box, expected, tolerance=1e-4):
            out = ops.box_iou(box, box)
977
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)
978
979
980
981
982
983
984
985
986
987
988
989
990
991

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
            iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-4)
Aditya Oke's avatar
Aditya Oke committed
992
993


994
995
@cpu_only
class TestGenBoxIou:
Aditya Oke's avatar
Aditya Oke committed
996
    def test_gen_iou(self):
997
998
        def gen_iou_check(box, expected, tolerance=1e-4):
            out = ops.generalized_box_iou(box, box)
999
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]])
            gen_iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            gen_iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-3)
Aditya Oke's avatar
Aditya Oke committed
1014
1015


1016
if __name__ == '__main__':
1017
    pytest.main([__file__])