test_models.py 29.1 KB
Newer Older
1
import contextlib
2
import functools
3
import io
4
5
import operator
import os
6
7
import pkgutil
import sys
8
9
import traceback
import warnings
10
from collections import OrderedDict
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
    return [v for k, v in module.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
26
27


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


73
74
75
76
77
78
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
79
    expected_file = expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


def _assert_expected(output, name, prec):
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
104
        print(f"Accepting updated output for {filename}:\n\n{output}")
105
106
107
108
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
109
            raise RuntimeError(f"The output for {filename}, is larger than 50kb")
110
111
112
113
114
115
116
117
118
119
120
    else:
        expected = torch.load(expected_file)
        rtol = atol = prec
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            imported = torch.jit.load(buffer)
            return imported

        m_import = get_export_import_copy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        tol = 3e-4
        try:
            torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
138
        except ValueError:
139
140
141
142
143
144
            # custom check for the models that return named tuples:
            # we compare field by field while ignoring None as assert_close can't handle None
            for a, b in zip(results, results_from_imported):
                if a is not None:
                    torch.testing.assert_close(a, b, atol=tol, rtol=tol)

145
    TEST_WITH_SLOW = os.getenv("PYTORCH_TEST_WITH_SLOW", "0") == "1"
146
147
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
148
        msg = (
149
            f"The check_jit_scriptable test for {nn_module.__class__.__name__} was skipped. "
150
151
152
153
            "This test checks if the module's results in TorchScript "
            "match eager and that it can be exported. To run these "
            "tests make sure you set the environment variable "
            "PYTORCH_TEST_WITH_SLOW=1 and that the test is not "
154
            "manually skipped."
155
        )
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

    with freeze_rng_state():
        eager_out = nn_module(*args)

    with freeze_rng_state():
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


173
174
175
176
177
178
179
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


209
210
211
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
212
script_model_unwrapper = {
213
214
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
215
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
216
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
217
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
218
219
220
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
221
    "ssd300_vgg16": lambda x: x[1],
222
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
223
}
224
225


226
227
228
229
230
231
232
233
234
235
236
237
238
239
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
240
241
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
242
    "deeplabv3_mobilenet_v3_large",
243
244
    "fcn_resnet50",
    "fcn_resnet101",
245
    "lraspp_mobilenet_v3_large",
246
    "maskrcnn_resnet50_fpn",
247
248
)

249
250
251
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
252
quantized_flaky_models = ("inception_v3", "resnet50")
253

254

255
256
257
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
258
259
260
261
262
263
264
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
265
    },
266
267
268
269
270
271
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
272
    },
273
274
275
276
277
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
278
    },
279
280
281
282
283
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
284
    },
285
286
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
287
    },
288
289
290
291
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
292
293
294
295
    },
}


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
}


Anirudh's avatar
Anirudh committed
333
334
335
336
337
338
339
340
341
342
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


343
344
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
345
346
347
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

348
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
349
    params = model1.state_dict()
350
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
351
352
353
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
354
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
355

356
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
357
358
359
360
361
362
363
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

364
365
366
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
367

368
369
370
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
371
372
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
373
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
374
375
376
377
378
379
380
381
382
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
383
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
384
385
386
387
388
389
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


390
391
392
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
393
394
395
396
397
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

398
    model = model_fn(norm_layer=get_gn)
399
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
400
401
402
403
404
405
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
406
407
408
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
409
410
411
412
413
414
415
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
416
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
432
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
433
434
435
436
437


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
438
439
440
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
441
442
443
444
445
446
447
448
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
449
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
464
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
465
466
467
468
469
470
471
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
472
        out = model(model_input)
473

Anirudh's avatar
Anirudh committed
474
    checkOut(out)
475

476
477
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
478
479
480
481
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
482

Anirudh's avatar
Anirudh committed
483
    checkOut(out_cpu)
484

485
486
    _check_input_backprop(model, [x])

487

Anirudh's avatar
Anirudh committed
488
def test_generalizedrcnn_transform_repr():
489

Anirudh's avatar
Anirudh committed
490
491
492
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
493

494
495
496
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
497

Anirudh's avatar
Anirudh committed
498
    # Check integrity of object __repr__ attribute
499
500
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
501
502
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
503
504
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
505
506


507
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
508
@pytest.mark.parametrize("dev", cpu_and_gpu())
509
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
510
511
    set_rng_seed(0)
    defaults = {
512
513
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
514
    }
515
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
516
    kwargs = {**defaults, **_model_params.get(model_name, {})}
517
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
518

519
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
520
521
522
523
524
525
526
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
    assert out.shape[-1] == 50
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
527
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
528
529
530
531
532
533
534
535

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
536

537
538
    _check_input_backprop(model, x)

539

540
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
541
@pytest.mark.parametrize("dev", cpu_and_gpu())
542
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
543
544
    set_rng_seed(0)
    defaults = {
545
546
547
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
548
    }
549
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
550
    kwargs = {**defaults, **_model_params.get(model_name, {})}
551
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
552

553
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
580
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
581
582
583
584
585
586
587
588
589

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
590
        msg = (
591
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
592
593
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
594
            "significant changes to the codebase."
595
        )
Anirudh's avatar
Anirudh committed
596
597
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
598

599
600
    _check_input_backprop(model, x)

601

602
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
603
@pytest.mark.parametrize("dev", cpu_and_gpu())
604
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
605
606
    set_rng_seed(0)
    defaults = {
607
608
609
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
610
    }
611
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
612
    kwargs = {**defaults, **_model_params.get(model_name, {})}
613
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
614

615
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
641
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
664
665
666
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
687
        msg = (
688
            f"The output of {test_detection_model.__name__} could only be partially validated. "
689
690
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
691
            "significant changes to the codebase."
692
        )
Anirudh's avatar
Anirudh committed
693
694
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
695

696
697
    _check_input_backprop(model, model_input)

698

699
700
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
701
    set_rng_seed(0)
702
    model = model_fn(num_classes=50, pretrained_backbone=False)
Anirudh's avatar
Anirudh committed
703
704
705
706
707
708
709
710
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
711
    targets = [{"boxes": 0.0}]
Anirudh's avatar
Anirudh committed
712
713
714
715
716
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
717
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
718
719
720
721
722
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
723
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
724
725
    with pytest.raises(ValueError):
        model(x, targets=targets)
726

727

728
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
729
@pytest.mark.parametrize("dev", cpu_and_gpu())
730
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
731
732
733
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
734
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
735
    # test both basicblock and Bottleneck
736
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
737
738
739
740
741
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
742
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
743
744
745
746
747
748
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
749

750
751
    _check_input_backprop(model, x)

752

753
754
755
756
757
758
759
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
760
761
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
762
    set_rng_seed(0)
763
    defaults = {
764
        "num_classes": 5,
765
766
767
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
768
    }
769
    model_name = model_fn.__name__
770
    kwargs = {**defaults, **_model_params.get(model_name, {})}
771
    input_shape = kwargs.pop("input_shape")
772
773

    # First check if quantize=True provides models that can run with input data
774
    model = model_fn(**kwargs)
775
    model.eval()
776
    x = torch.rand(input_shape)
777
778
779
780
781
782
783
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
        _check_fx_compatible(model, x)
784

785
    kwargs["quantize"] = False
786
    for eval_mode in [True, False]:
787
        model = model_fn(**kwargs)
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        if eval_mode:
            model.eval()
            model.qconfig = torch.quantization.default_qconfig
        else:
            model.train()
            model.qconfig = torch.quantization.default_qat_qconfig

        model.fuse_model()
        if eval_mode:
            torch.quantization.prepare(model, inplace=True)
        else:
            torch.quantization.prepare_qat(model, inplace=True)
            model.eval()

        torch.quantization.convert(model, inplace=True)

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


811
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
812
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
813
    model_name = model_fn.__name__
814
815
816
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
817
        model = model_fn(pretrained=False, pretrained_backbone=True, trainable_backbone_layers=trainable_layers)
818
819
820
821
822

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


823
if __name__ == "__main__":
824
    pytest.main([__file__])