test_ops.py 46.3 KB
Newer Older
1
from common_utils import set_rng_seed
2
3
4
import math
import unittest

5
import numpy as np
6

7
import torch
8
from functools import lru_cache
9
from torch import Tensor
10
from torch.autograd import gradcheck
11
from torch.nn.modules.utils import _pair
12
from torchvision import ops
13
from typing import Tuple
14
15


16
class OpTester(object):
17
18
19
20
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

21
22
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
23

24
25
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
26

27
28
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
29

30
31
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
32

33
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
34
35
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
36

37
38
39
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
40

41
42
43
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
44
45

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
46
47
48
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

49
50
51
52
53
54
55
56
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
57
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
58
59
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
60
61
62
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
63
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
64
65
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
66
67
68
69
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
70
                            dtype=rois_dtype, device=device)
71

72
        pool_h, pool_w = pool_size, pool_size
73
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
74
75
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
76
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
77
                                sampling_ratio=-1, device=device, dtype=self.dtype, **kwargs)
78

79
80
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
81
82
83
84
85
86
87
88
89
90

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
91

92
93
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
94

95
        script_func = self.get_script_fn(rois, pool_size)
96

97
98
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

116
117
    def fn(*args, **kwargs):
        pass
118

119
120
    def get_script_fn(*args, **kwargs):
        pass
121

122
123
    def expected_fn(*args, **kwargs):
        pass
124

125
126
127
128
129
130
131
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

132

133
134
135
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
136

137
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
138
139
        scriped = torch.jit.script(ops.roi_pool)
        return lambda x: scriped(x, rois, pool_size)
140

141
142
143
144
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
145

146
147
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
148

149
150
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
151

152
153
154
155
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
156

157
158
159
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
160

161
162
163
164
165
166
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
167

168
169
170
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

171

172
173
174
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
175

176
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
177
178
        scriped = torch.jit.script(ops.ps_roi_pool)
        return lambda x: scriped(x, rois, pool_size)
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
211

212
213
214
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

215

216
217
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
218

219
220
221
222
223
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
224

225
226
227
228
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
229

230
231
232
233
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
234

235
236
    wy_h = y - y_low
    wx_h = x - x_low
237
    wy_l = 1 - wy_h
238
    wx_l = 1 - wx_h
239

240
    val = 0
241
242
243
244
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
245
    return val
246
247


248
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
249
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
250
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
251
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
252

253
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
254
255
        scriped = torch.jit.script(ops.roi_align)
        return lambda x: scriped(x, rois, pool_size)
256

AhnDW's avatar
AhnDW committed
257
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
258
                    device=None, dtype=torch.float64):
259
260
        if device is None:
            device = torch.device("cpu")
261
262
263
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
264
265
        offset = 0.5 if aligned else 0.

266
267
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
268
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
289
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
290
291
292
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
293
294
        return out_data

295
296
297
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

298
299
300
301
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
        for aligned in (True, False):
            super()._test_forward(device, contiguous, x_dtype, rois_dtype, aligned=aligned)

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def test_qroialign(self):
        """Make sure quantized version of RoIAlign is close to float version"""
        pool_size = 5
        img_size = 10
        n_channels = 2
        num_imgs = 1
        dtype = torch.float

        def make_rois(num_rois=1000):
            rois = torch.randint(0, img_size // 2, size=(num_rois, 5)).to(dtype)
            rois[:, 0] = torch.randint(0, num_imgs, size=(num_rois,))  # set batch index
            rois[:, 3:] += rois[:, 1:3]  # make sure boxes aren't degenerate
            return rois

        for aligned in (True, False):
            for scale, zero_point in ((1, 0), (2, 10), (0.1, 50)):
                for qdtype in (torch.qint8, torch.quint8, torch.qint32):

                    x = torch.randint(50, 100, size=(num_imgs, n_channels, img_size, img_size)).to(dtype)
                    qx = torch.quantize_per_tensor(x, scale=scale, zero_point=zero_point, dtype=qdtype)

                    rois = make_rois()
                    qrois = torch.quantize_per_tensor(rois, scale=scale, zero_point=zero_point, dtype=qdtype)

                    x, rois = qx.dequantize(), qrois.dequantize()  # we want to pass the same inputs

                    y = ops.roi_align(
                        x,
                        rois,
                        output_size=pool_size,
                        spatial_scale=1,
                        sampling_ratio=-1,
                        aligned=aligned,
                    )
                    qy = ops.roi_align(
                        qx,
                        qrois,
                        output_size=pool_size,
                        spatial_scale=1,
                        sampling_ratio=-1,
                        aligned=aligned,
                    )

                    # The output qy is itself a quantized tensor and there might have been a loss of info when it was
                    # quantized. For a fair comparison we need to quantize y as well
                    quantized_float_y = torch.quantize_per_tensor(y, scale=scale, zero_point=zero_point, dtype=qdtype)

                    try:
                        # Ideally, we would assert this, which passes with (scale, zero) == (1, 0)
                        self.assertTrue((qy == quantized_float_y).all())
                    except AssertionError:
                        # But because the computation aren't exactly the same between the 2 RoIAlign procedures, some
                        # rounding error may lead to a difference of 2 in the output.
                        # For example with (scale, zero) = (2, 10), 45.00000... will be quantized to 44
                        # but 45.00000001 will be rounded to 46. We make sure below that:
                        # - such discrepancies between qy and quantized_float_y are very rare (less then 5%)
                        # - any difference between qy and quantized_float_y is == scale
                        diff_idx = torch.where(qy != quantized_float_y)
                        num_diff = diff_idx[0].numel()
                        self.assertTrue(num_diff / qy.numel() < .05)

                        abs_diff = torch.abs(qy[diff_idx].dequantize() - quantized_float_y[diff_idx].dequantize())
                        t_scale = torch.full_like(abs_diff, fill_value=scale)
                        self.assertTrue(torch.allclose(abs_diff, t_scale, atol=1e-5))

        x = torch.randint(50, 100, size=(2, 3, 10, 10)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=1, zero_point=0, dtype=torch.qint8)
        rois = make_rois(10)
        qrois = torch.quantize_per_tensor(rois, scale=1, zero_point=0, dtype=torch.qint8)
        with self.assertRaisesRegex(RuntimeError, "Only one image per batch is allowed"):
            ops.roi_align(qx, qrois, output_size=pool_size)

374

375
376
377
378
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
379

380
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
381
382
        scriped = torch.jit.script(ops.ps_roi_align)
        return lambda x: scriped(x, rois, pool_size)
383

384
385
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
386
387
        if device is None:
            device = torch.device("cpu")
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
416
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
417
418
419
420
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
421

422
423
424
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
class MultiScaleRoIAlignTester(unittest.TestCase):
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
        self.assertEqual(t.__repr__(), expected_string)


440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
class NMSTester(unittest.TestCase):
    def reference_nms(self, boxes, scores, iou_threshold):
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

464
465
466
467
468
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
469
470
471
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
472
        boxes = torch.rand(N, 4) * 100
473
474
475
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
476
        iou_thresh += 1e-5
477
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
478
479
480
481
482
483
        scores = torch.rand(N)
        return boxes, scores

    def test_nms(self):
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
484
            boxes, scores = self._create_tensors_with_iou(1000, iou)
485
486
            keep_ref = self.reference_nms(boxes, scores, iou)
            keep = ops.nms(boxes, scores, iou)
487
            self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
488
489
490
491
        self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def test_qnms(self):
        # Note: we compare qnms vs nms instead of qnms vs reference implementation.
        # This is because with the int convertion, the trick used in _create_tensors_with_iou
        # doesn't really work (in fact, nms vs reference implem will also fail with ints)
        err_msg = 'NMS and QNMS give different results for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
            for scale, zero_point in ((1, 0), (2, 50), (3, 10)):
                boxes, scores = self._create_tensors_with_iou(1000, iou)
                scores *= 100  # otherwise most scores would be 0 or 1 after int convertion

                qboxes = torch.quantize_per_tensor(boxes, scale=scale, zero_point=zero_point,
                                                   dtype=torch.quint8)
                qscores = torch.quantize_per_tensor(scores, scale=scale, zero_point=zero_point,
                                                    dtype=torch.quint8)

                boxes = qboxes.dequantize()
                scores = qscores.dequantize()

                keep = ops.nms(boxes, scores, iou)
                qkeep = ops.nms(qboxes, qscores, iou)

                self.assertTrue(torch.allclose(qkeep, keep), err_msg.format(iou))

516
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
517
518
    def test_nms_cuda(self, dtype=torch.float64):
        tol = 1e-3 if dtype is torch.half else 1e-5
519
520
521
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

        for iou in [0.2, 0.5, 0.8]:
522
            boxes, scores = self._create_tensors_with_iou(1000, iou)
523
524
525
            r_cpu = ops.nms(boxes, scores, iou)
            r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

526
527
528
529
            is_eq = torch.allclose(r_cpu, r_cuda.cpu())
            if not is_eq:
                # if the indices are not the same, ensure that it's because the scores
                # are duplicate
530
                is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
531
            self.assertTrue(is_eq, err_msg.format(iou))
532

533
534
535
536
537
538
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self.test_nms_cuda(dtype=dtype)

539
540
541
542
543
544
545
546
547
548
549
550
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_nms_cuda_float16(self):
        boxes = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                              [285.1472, 188.7374, 1192.4984, 851.0669],
                              [279.2440, 197.9812, 1189.4746, 849.2019]]).cuda()
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
        self.assertTrue(torch.all(torch.eq(keep32, keep16)))

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    def test_batched_nms_implementations(self):
        """Make sure that both implementations of batched_nms yield identical results"""

        num_boxes = 1000
        iou_threshold = .9

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

        err_msg = "The vanilla and the trick implementation yield different nms outputs."
        self.assertTrue(torch.allclose(keep_vanilla, keep_trick), err_msg)

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
        self.assertTrue(torch.allclose(empty, ops.batched_nms(empty, None, None, None)))

573

574
class DeformConvTester(OpTester, unittest.TestCase):
575
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
606
607
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
608
609
610
611

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

612
613
614
615
616
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
617
618
619
620
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

621
    @lru_cache(maxsize=None)
622
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

641
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
642
643

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
644
                             device=device, dtype=dtype, requires_grad=True)
645

646
647
648
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

649
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
650
                             device=device, dtype=dtype, requires_grad=True)
651

652
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
653
654
655
656

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
657
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
658
659
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

660
        return x, weight, offset, mask, bias, stride, pad, dilation
661

662
663
    def _test_forward(self, device, contiguous, dtype=None):
        dtype = self.dtype if dtype is None else dtype
664
        for batch_sz in [0, 33]:
665
            self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
666

667
    def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
668
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
669
670
671
672
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
673
        tol = 2e-3 if dtype is torch.half else 1e-5
674
675

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
676
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
677
        res = layer(x, offset, mask)
678
679
680

        weight = layer.weight.data
        bias = layer.bias.data
681
682
683
684
685
686
687
688
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
689

690
691
        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))
692

693
694
695
696
697
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

698
699
700
701
        with self.assertRaises(RuntimeError):
            wrong_mask = torch.rand_like(mask[:, :2])
            res = layer(x, offset, wrong_mask)

702
    def _test_backward(self, device, contiguous):
703
704
705
706
        for batch_sz in [0, 33]:
            self._test_backward_with_batchsize(device, contiguous, batch_sz)

    def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
707
708
709
710
711
712
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
713

714
715
716
717
718
719
720
721
722
723
724
725
726
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
727

728
729
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
                  (x, offset, mask, weight, bias), nondet_tol=1e-5)
730
731

        @torch.jit.script
732
733
734
735
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
736

737
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
738
739
                  (x, offset, weight, bias), nondet_tol=1e-5)

740
741
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_compare_cpu_cuda_grads(self):
742
743
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
744
        for contiguous in [False, True]:
745
746
747
748
749
750
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
751
            mask = torch.rand(8, 3 * 3, 1000, 110)
752
753
754
755

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
756
                mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
757
758
759
760
761
762
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

763
                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
764
765
766
767
768
769
770
771
772
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

773
774
775
776
777
778
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self._test_forward(torch.device("cuda"), False, dtype=dtype)

779

780
781
782
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
783
784
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
785
786

        # Check integrity of object __repr__ attribute
787
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
788
789
        self.assertEqual(t.__repr__(), expected_string)

790
791
792
793
794
795
796
797
798
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

799
        # Check that default eps is equal to the one of BN
800
801
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
802
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

819

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
class BoxTester(unittest.TestCase):
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, exp_xywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
        self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(box_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, box_tensor)).item()

925
926
927
928
929
930
931
932
933
934
935
936
937
    def test_bbox_invalid(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        invalid_infmts = ["xwyh", "cxwyh"]
        invalid_outfmts = ["xwcx", "xhwcy"]
        for inv_infmt in invalid_infmts:
            for inv_outfmt in invalid_outfmts:
                self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
938

939
940
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
941

942
943
944
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
        self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
945

946
947
948
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
        self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
949
950


Aditya Oke's avatar
Aditya Oke committed
951
952
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
        def area_check(box, expected, tolerance=1e-4):
            out = ops.box_area(box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
            box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
            expected = torch.tensor([10000, 0])
            area_check(box_tensor, expected)

        # Check for float32 and float64 boxes
        for dtype in [torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=torch.float64)
            area_check(box_tensor, expected, tolerance=0.05)

        # Check for float16 box
        box_tensor = torch.tensor([[285.25, 185.625, 1194.0, 851.5],
                                   [285.25, 188.75, 1192.0, 851.0],
                                   [279.25, 198.0, 1189.0, 849.0]], dtype=torch.float16)
        expected = torch.tensor([605113.875, 600495.1875, 592247.25])
        area_check(box_tensor, expected)
Aditya Oke's avatar
Aditya Oke committed
978
979
980
981


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
        def iou_check(box, expected, tolerance=1e-4):
            out = ops.box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
            iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-4)
Aditya Oke's avatar
Aditya Oke committed
1000
1001
1002
1003


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
        def gen_iou_check(box, expected, tolerance=1e-4):
            out = ops.generalized_box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]])
            gen_iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            gen_iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-3)
Aditya Oke's avatar
Aditya Oke committed
1022
1023


1024
1025
if __name__ == '__main__':
    unittest.main()