models.rst 17 KB
Newer Older
1
2
.. _models:

3
4
Models and pre-trained weights
##############################
5

6
The ``torchvision.models`` subpackage contains definitions of models for addressing
7
different tasks, including: image classification, pixelwise semantic
8
segmentation, object detection, instance segmentation, person
9
keypoint detection, video classification, and optical flow.
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
General information on pre-trained weights
==========================================

TorchVision offers pre-trained weights for every provided architecture, using
the PyTorch :mod:`torch.hub`. Instancing a pre-trained model will download its
weights to a cache directory. This directory can be set using the `TORCH_HOME`
environment variable. See :func:`torch.hub.load_state_dict_from_url` for details.

.. note::

    The pre-trained models provided in this library may have their own licenses or
    terms and conditions derived from the dataset used for training. It is your
    responsibility to determine whether you have permission to use the models for
    your use case.

26
.. note ::
27
28
29
30
31
32
33
    Backward compatibility is guaranteed for loading a serialized
    ``state_dict`` to the model created using old PyTorch version.
    On the contrary, loading entire saved models or serialized
    ``ScriptModules`` (serialized using older versions of PyTorch)
    may not preserve the historic behaviour. Refer to the following
    `documentation
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_
34

35

36
37
Initializing pre-trained models
-------------------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
38

39
40
41
As of v0.13, TorchVision offers a new `Multi-weight support API
<https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/>`_
for loading different weights to the existing model builder methods:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
42
43
44

.. code:: python

45
    from torchvision.models import resnet50, ResNet50_Weights
46

47
48
    # Old weights with accuracy 76.130%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
49

50
51
    # New weights with accuracy 80.858%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
52

53
54
55
    # Best available weights (currently alias for IMAGENET1K_V2)
    # Note that these weights may change across versions
    resnet50(weights=ResNet50_Weights.DEFAULT)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
56

57
58
    # Strings are also supported
    resnet50(weights="IMAGENET1K_V2")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
59

60
61
    # No weights - random initialization
    resnet50(weights=None)
62

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
63

64
Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
65

66
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
67

68
    from torchvision.models import resnet50, ResNet50_Weights
69

70
71
72
73
74
    # Using pretrained weights:
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
    resnet50(weights="IMAGENET1K_V1")
    resnet50(pretrained=True)  # deprecated
    resnet50(True)  # deprecated
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
75

76
77
78
79
80
    # Using no weights:
    resnet50(weights=None)
    resnet50()
    resnet50(pretrained=False)  # deprecated
    resnet50(False)  # deprecated
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
81

82
Note that the ``pretrained`` parameter is now deprecated, using it will emit warnings and will be removed on v0.15.
83

84
85
Using the pre-trained models
----------------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
86

87
88
89
90
91
92
Before using the pre-trained models, one must preprocess the image
(resize with right resolution/interpolation, apply inference transforms,
rescale the values etc). There is no standard way to do this as it depends on
how a given model was trained. It can vary across model families, variants or
even weight versions. Using the correct preprocessing method is critical and
failing to do so may lead to decreased accuracy or incorrect outputs.
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
93

94
95
96
97
All the necessary information for the inference transforms of each pre-trained
model is provided on its weights documentation. To simplify inference, TorchVision
bundles the necessary preprocessing transforms into each model weight. These are
accessible via the ``weight.transforms`` attribute:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
98

99
.. code:: python
100

101
102
103
    # Initialize the Weight Transforms
    weights = ResNet50_Weights.DEFAULT
    preprocess = weights.transforms()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
104

105
106
    # Apply it to the input image
    img_transformed = preprocess(img)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
107

108

109
110
111
112
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
113

114
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
115

116
117
118
    # Initialize model
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)
119

120
121
    # Set model to eval mode
    model.eval()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
Model Registration Mechanism
----------------------------

.. betastatus:: registration mechanism

As of v0.14, TorchVision offers a new model registration mechanism which allows retreaving models
and weights by their names. Here are a few examples on how to use them:

.. code:: python

    # List available models
    all_models = list_models()
    classification_models = list_models(module=torchvision.models)

    # Initialize models
    m1 = get_model("mobilenet_v3_large", weights=None)
    m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")

    # Fetch weights
    weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
    assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT

    weights_enum = get_model_weights("quantized_mobilenet_v3_large")
    assert weights_enum == MobileNet_V3_Large_QuantizedWeights

    weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
    assert weights_enum == weights_enum2

Here are the available public methods of the model registration mechanism:

.. currentmodule:: torchvision.models
.. autosummary::
    :toctree: generated/
    :template: function.rst

    get_model
    get_model_weights
    get_weight
    list_models

163
164
Using models from Hub
---------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
165

166
Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:
167

168
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
169

170
    import torch
171

172
173
    # Option 1: passing weights param as string
    model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
174

175
176
177
    # Option 2: passing weights param as enum
    weights = torch.hub.load("pytorch/vision", "get_weight", weights="ResNet50_Weights.IMAGENET1K_V2")
    model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)
178

179
180
181
182
183
184
185
186
187
You can also retrieve all the available weights of a specific model via PyTorch Hub by doing:

.. code:: python

    import torch

    weight_enum = torch.hub.load("pytorch/vision", "get_model_weights", name="resnet50")
    print([weight for weight in weight_enum])

188
189
190
The only exception to the above are the detection models included on
:mod:`torchvision.models.detection`. These models require TorchVision
to be installed because they depend on custom C++ operators.
Bar's avatar
Bar committed
191

192
193
Classification
==============
194

195
.. currentmodule:: torchvision.models
Bar's avatar
Bar committed
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
The following classification models are available, with or without pre-trained
weights:

.. toctree::
   :maxdepth: 1

   models/alexnet
   models/convnext
   models/densenet
   models/efficientnet
   models/efficientnetv2
   models/googlenet
   models/inception
   models/mnasnet
   models/mobilenetv2
   models/mobilenetv3
   models/regnet
   models/resnet
   models/resnext
   models/shufflenetv2
   models/squeezenet
   models/swin_transformer
   models/vgg
   models/vision_transformer
   models/wide_resnet

|

Here is an example of how to use the pre-trained image classification models:
226

227
.. code:: python
228

229
230
    from torchvision.io import read_image
    from torchvision.models import resnet50, ResNet50_Weights
231

232
    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
233

234
235
236
237
    # Step 1: Initialize model with the best available weights
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)
    model.eval()
238

239
240
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
241

242
243
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
244

245
246
247
248
249
250
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score:.1f}%")
251

252
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
253

254
255
Table of all available classification weights
---------------------------------------------
256

257
Accuracies are reported on ImageNet-1K using single crops:
258

259
.. include:: generated/classification_table.rst
260

261
262
Quantized models
----------------
263

264
.. currentmodule:: torchvision.models.quantization
265

266
267
The following architectures provide support for INT8 quantized models, with or without
pre-trained weights:
268

269
270
.. toctree::
   :maxdepth: 1
271

272
273
274
275
276
277
278
   models/googlenet_quant
   models/inception_quant
   models/mobilenetv2_quant
   models/mobilenetv3_quant
   models/resnet_quant
   models/resnext_quant
   models/shufflenetv2_quant
279

280
|
281

282
Here is an example of how to use the pre-trained quantized image classification models:
283
284
285

.. code:: python

286
287
288
289
290
291
292
293
    from torchvision.io import read_image
    from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights

    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

    # Step 1: Initialize model with the best available weights
    weights = ResNet50_QuantizedWeights.DEFAULT
    model = resnet50(weights=weights, quantize=True)
294
295
    model.eval()

296
297
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
298

299
300
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
301

302
303
304
305
306
307
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score}%")
308

309
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
310

311

312
313
Table of all available quantized classification weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
314

315
Accuracies are reported on ImageNet-1K using single crops:
316

317
.. include:: generated/classification_quant_table.rst
318

319
320
Semantic Segmentation
=====================
321

322
.. currentmodule:: torchvision.models.segmentation
323

324
325
.. betastatus:: segmentation module

326
327
The following semantic segmentation models are available, with or without
pre-trained weights:
328

329
330
.. toctree::
   :maxdepth: 1
331

332
333
334
335
336
   models/deeplabv3
   models/fcn
   models/lraspp

|
337

338
Here is an example of how to use the pre-trained semantic segmentation models:
339

340
.. code:: python
341

342
343
344
    from torchvision.io.image import read_image
    from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
    from torchvision.transforms.functional import to_pil_image
345

346
    img = read_image("gallery/assets/dog1.jpg")
347

348
349
350
351
    # Step 1: Initialize model with the best available weights
    weights = FCN_ResNet50_Weights.DEFAULT
    model = fcn_resnet50(weights=weights)
    model.eval()
352

353
354
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
355

356
357
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
358

359
360
361
362
363
364
    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)["out"]
    normalized_masks = prediction.softmax(dim=1)
    class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
    mask = normalized_masks[0, class_to_idx["dog"]]
    to_pil_image(mask).show()
365

366
367
368
369
370
371
372
373
374
375
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
The output format of the models is illustrated in :ref:`semantic_seg_output`.


Table of all available semantic segmentation weights
----------------------------------------------------

All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:

.. include:: generated/segmentation_table.rst
376

377

378
.. _object_det_inst_seg_pers_keypoint_det:
379
380
381
382
383
384

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
385
386
in torchvision. The models expect a list of ``Tensor[C, H, W]``.
Check the constructor of the models for more information.
387

388
389
.. betastatus:: detection module

390
391
Object Detection
----------------
392

393
.. currentmodule:: torchvision.models.detection
394

395
396
The following object detection models are available, with or without pre-trained
weights:
397

398
399
.. toctree::
   :maxdepth: 1
400

401
402
403
404
405
   models/faster_rcnn
   models/fcos
   models/retinanet
   models/ssd
   models/ssdlite
406

407
|
408

409
Here is an example of how to use the pre-trained object detection models:
410

411
.. code:: python
412

413

414
415
416
417
    from torchvision.io.image import read_image
    from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
    from torchvision.utils import draw_bounding_boxes
    from torchvision.transforms.functional import to_pil_image
418

419
    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
Hu Ye's avatar
Hu Ye committed
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    # Step 1: Initialize model with the best available weights
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
    model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = [preprocess(img)]

    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)[0]
    labels = [weights.meta["categories"][i] for i in prediction["labels"]]
    box = draw_bounding_boxes(img, boxes=prediction["boxes"],
                              labels=labels,
                              colors="red",
                              width=4, font_size=30)
    im = to_pil_image(box.detach())
    im.show()

The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`instance_seg_output`.

Table of all available Object detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Box MAPs are reported on COCO val2017:

.. include:: generated/detection_table.rst
Hu Ye's avatar
Hu Ye committed
451
452


453
454
Instance Segmentation
---------------------
455

456
.. currentmodule:: torchvision.models.detection
457

458
459
The following instance segmentation models are available, with or without pre-trained
weights:
460

461
462
.. toctree::
   :maxdepth: 1
463

464
   models/mask_rcnn
465

466
|
467

468

469
For details on how to plot the masks of the models, you may refer to :ref:`instance_seg_output`.
470

471
472
Table of all available Instance segmentation weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
473

474
Box and Mask MAPs are reported on COCO val2017:
475

476
.. include:: generated/instance_segmentation_table.rst
477

478
479
Keypoint Detection
------------------
480

481
.. currentmodule:: torchvision.models.detection
482

483
484
The following person keypoint detection models are available, with or without
pre-trained weights:
485

486
487
.. toctree::
   :maxdepth: 1
488

489
   models/keypoint_rcnn
490

491
|
492

493
494
The classes of the pre-trained model outputs can be found at ``weights.meta["keypoint_names"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`keypoint_output`.
495

496
497
Table of all available Keypoint detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
498

499
Box and Keypoint MAPs are reported on COCO val2017:
500

501
.. include:: generated/detection_keypoint_table.rst
502

503
504

Video Classification
505
506
====================

507
.. currentmodule:: torchvision.models.video
508

509
510
.. betastatus:: video module

511
512
The following video classification models are available, with or without
pre-trained weights:
513

514
515
.. toctree::
   :maxdepth: 1
516

517
   models/video_mvit
518
   models/video_resnet
519

520
521
522
523
524
|

Here is an example of how to use the pre-trained video classification models:

.. code:: python
525
526


527
528
    from torchvision.io.video import read_video
    from torchvision.models.video import r3d_18, R3D_18_Weights
529

530
    vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
531
    vid = vid[:32]  # optionally shorten duration
532

533
534
535
536
    # Step 1: Initialize model with the best available weights
    weights = R3D_18_Weights.DEFAULT
    model = r3d_18(weights=weights)
    model.eval()
537

538
539
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
540

541
542
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(vid).unsqueeze(0)
543

544
545
546
547
548
549
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    label = prediction.argmax().item()
    score = prediction[label].item()
    category_name = weights.meta["categories"][label]
    print(f"{category_name}: {100 * score}%")
550

551
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
552

553

554
555
Table of all available video classification weights
---------------------------------------------------
556

557
Accuracies are reported on Kinetics-400 using single crops for clip length 16:
558

559
.. include:: generated/video_table.rst
560

561
Optical Flow
562
563
============

564
565
566
.. currentmodule:: torchvision.models.optical_flow

The following Optical Flow models are available, with or without pre-trained
567

568
569
.. toctree::
   :maxdepth: 1
570

571
   models/raft