"examples/vscode:/vscode.git/clone" did not exist on "fa71fb447803d269d1050fe5081e2cb577b04b94"
test_transforms_tensor.py 34.3 KB
Newer Older
1
import os
2
import sys
3
4

import numpy as np
5
import pytest
6
import torch
7
import torchvision.transforms._pil_constants as _pil_constants
Nicolas Hug's avatar
Nicolas Hug committed
8
from common_utils import (
9
10
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
11
12
    _create_data,
    _create_data_batch,
13
    assert_equal,
14
15
16
17
    cpu_and_gpu,
    float_dtypes,
    get_tmp_dir,
    int_dtypes,
Nicolas Hug's avatar
Nicolas Hug committed
18
)
19
from torchvision import transforms as T
20
from torchvision.transforms import functional as F, InterpolationMode
21
from torchvision.transforms.autoaugment import _apply_op
22

23
24
25
26
27
28
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
    InterpolationMode.NEAREST,
    InterpolationMode.NEAREST_EXACT,
    InterpolationMode.BILINEAR,
    InterpolationMode.BICUBIC,
)
29
30


31
32
33
34
35
36
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
37

38

39
40
41
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
42

43
44
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
45
        torch.manual_seed(12)
46
47
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
48

49
50
51
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
52
53


54
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
55
    fn_kwargs = fn_kwargs or {}
56

57
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
58
59
60
61
62
63
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
64
65


vfdev's avatar
vfdev committed
66
def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
67
    meth_kwargs = meth_kwargs or {}
68

69
    # test for class interface
vfdev's avatar
vfdev committed
70
    f = transform_cls(**meth_kwargs)
71
    scripted_fn = torch.jit.script(f)
72

73
    tensor, pil_img = _create_data(26, 34, channels, device=device)
74
75
76
77
78
79
80
81
82
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
83

84
85
86
87
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

88
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
89
90
91
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
vfdev's avatar
vfdev committed
92
        scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))
93

94

95
96
97
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
98
99


100
101
102
103
104
105
106
def _test_fn_save_load(fn, tmpdir):
    scripted_fn = torch.jit.script(fn)
    p = os.path.join(tmpdir, f"t_op_list_{fn.__name__ if hasattr(fn, '__name__') else fn.__class__.__name__}.pt")
    scripted_fn.save(p)
    _ = torch.jit.load(p)


107
@pytest.mark.parametrize("device", cpu_and_gpu())
108
@pytest.mark.parametrize(
109
110
    "func,method,fn_kwargs,match_kwargs",
    [
111
112
113
114
115
116
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
117
118
119
120
121
122
123
124
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
125
)
126
@pytest.mark.parametrize("channels", [1, 3])
127
128
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
129

130

131
@pytest.mark.parametrize("seed", range(10))
132
133
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
134
class TestColorJitter:
135
136
137
138
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

139
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
140
    def test_color_jitter_brightness(self, brightness, device, channels):
141
142
143
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
144
145
146
147
148
149
150
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
151
152
        )

153
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
154
    def test_color_jitter_contrast(self, contrast, device, channels):
155
156
157
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
158
159
160
161
162
163
164
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
165
166
        )

167
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
168
    def test_color_jitter_saturation(self, saturation, device, channels):
169
170
171
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
172
173
174
175
176
177
178
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
179
180
        )

181
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
182
    def test_color_jitter_hue(self, hue, device, channels):
183
184
        meth_kwargs = {"hue": hue}
        _test_class_op(
185
186
187
188
189
190
191
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
192
193
        )

194
    def test_color_jitter_all(self, device, channels):
195
196
197
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
198
199
200
201
202
203
204
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
205
206
207
        )


208
209
210
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
211
212
213
214
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
215
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
216
    # Test functional.pad and transforms.Pad with padding as [int, ]
217
    fn_kwargs = meth_kwargs = {
218
        "padding": [mul * 2],
219
220
221
222
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
223
224
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
225
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
226
227
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
228
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
229
230


231
@pytest.mark.parametrize("device", cpu_and_gpu())
232
233
234
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
235
236
237
238
239
240
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


259
260
261
262
263
264
265
266
267
268
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
269
270
271
272
@pytest.mark.parametrize("pad_if_needed", [True, False])
@pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
@pytest.mark.parametrize("size", [5, [5], [6, 6]])
def test_random_crop(size, padding, pad_if_needed, padding_config, device):
273
274
    config = dict(padding_config)
    config["size"] = size
275
276
    config["padding"] = padding
    config["pad_if_needed"] = pad_if_needed
277
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
278
279


280
281
282
283
284
def test_random_crop_save_load(tmpdir):
    fn = T.RandomCrop(32, [4], pad_if_needed=True)
    _test_fn_save_load(fn, tmpdir)


285
@pytest.mark.parametrize("device", cpu_and_gpu())
286
def test_center_crop(device, tmpdir):
287
    fn_kwargs = {"output_size": (4, 5)}
288
    meth_kwargs = {"size": (4, 5)}
289
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
290
    fn_kwargs = {"output_size": (5,)}
291
    meth_kwargs = {"size": (5,)}
292
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
293
294
295
296
297
298
299
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
300
    f = T.CenterCrop(size=[5])
301
302
303
304
305
306
307
308
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

309
310
311
312

def test_center_crop_save_load(tmpdir):
    fn = T.CenterCrop(size=[5])
    _test_fn_save_load(fn, tmpdir)
313
314


315
316
317
318
319
320
321
322
323
324
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
325
@pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
326
def test_x_crop(fn, method, out_length, size, device):
327
    meth_kwargs = fn_kwargs = {"size": size}
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


363
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
364
365
366
def test_x_crop_save_load(method, tmpdir):
    fn = getattr(T, method)(size=[5])
    _test_fn_save_load(fn, tmpdir)
367
368
369


class TestResize:
370
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
371
372
373
374
375
376
377
378
379
380
381
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

382
383
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
384
    @pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
385
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
386
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
387
388
389
390
391
392
393
394
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
395
            pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")
396
397
398
399
400
401

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

402
403
404
    def test_resize_save_load(self, tmpdir):
        fn = T.Resize(size=[32])
        _test_fn_save_load(fn, tmpdir)
405

406
407
408
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
409
    @pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
410
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC, NEAREST_EXACT])
411
412
413
    @pytest.mark.parametrize("antialias", [None, True, False])
    def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):

414
415
        if antialias and interpolation in {NEAREST, NEAREST_EXACT}:
            pytest.skip(f"Can not resize if interpolation mode is {interpolation} and antialias=True")
416

417
418
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
419
420
421
        transform = T.RandomResizedCrop(
            size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
        )
422
423
424
425
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

426
427
428
    def test_resized_crop_save_load(self, tmpdir):
        fn = T.RandomResizedCrop(size=[32])
        _test_fn_save_load(fn, tmpdir)
429
430


431
432
433
434
435
436
437
438
439
440
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


441
442
443
def test_random_affine_save_load(tmpdir):
    fn = T.RandomAffine(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
444
445


446
447
448
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
449
450
451
452
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


453
454
455
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
456
457
458
459
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


460
461
462
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
463
464
465
466
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


467
468
469
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
470
471
472
473
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


474
475
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
476
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
477
478
479
480
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


481
482
483
484
485
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
486
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
487
488
489
490
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

491
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
492
493
494
495
496
497
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


498
499
500
def test_random_rotate_save_load(tmpdir):
    fn = T.RandomRotation(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
501
502


503
504
505
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
506
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
507
508
509
510
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

511
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
512
513
514
515
516
517
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


518
519
520
def test_random_perspective_save_load(tmpdir):
    fn = T.RandomPerspective()
    _test_fn_save_load(fn, tmpdir)
521
522


523
524
525
526
527
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
528
529
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
530
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
531
532


533
534
535
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
536
537
538
539
540
541
542
543
544
545
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

546
547
548
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
549
550
551
552
553
554
555
556
557
558
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


559
def test_convert_image_dtype_save_load(tmpdir):
560
    fn = T.ConvertImageDtype(dtype=torch.uint8)
561
    _test_fn_save_load(fn, tmpdir)
562
563


564
565
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
566
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
567
568
569
570
571
572
573
574
575
576
577
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


578
579
580
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
581
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
582
583
584
585
586
587
588
589
590
591
592
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


593
@pytest.mark.parametrize("device", cpu_and_gpu())
594
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
595
596
597
598
599
600
601
602
603
604
605
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


606
@pytest.mark.parametrize("device", cpu_and_gpu())
607
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
def test_augmix(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    class DeterministicAugMix(T.AugMix):
        def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
            # patch the method to ensure that the order of rand calls doesn't affect the outcome
            return params.softmax(dim=-1)

    transform = DeterministicAugMix(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
625
626
627
def test_autoaugment_save_load(augmentation, tmpdir):
    fn = augmentation()
    _test_fn_save_load(fn, tmpdir)
628
629


630
631
632
633
634
635
636
637
638
639
640
641
642
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
643
        return pil_img.transform((image_size, image_size), _pil_constants.AFFINE, matrix, resample=resample)
644
645
646
647

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
648
649
        F.InterpolationMode.NEAREST: _pil_constants.NEAREST,
        F.InterpolationMode.BILINEAR: _pil_constants.BILINEAR,
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)

    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


672
@pytest.mark.parametrize("device", cpu_and_gpu())
673
@pytest.mark.parametrize(
674
    "config",
675
676
677
678
679
680
681
682
683
684
685
    [
        {},
        {"value": 1},
        {"value": 0.2},
        {"value": "random"},
        {"value": (1, 1, 1)},
        {"value": (0.2, 0.2, 0.2)},
        {"value": [1, 1, 1]},
        {"value": [0.2, 0.2, 0.2]},
        {"value": "random", "ratio": (0.1, 0.2)},
    ],
686
687
688
689
690
691
692
693
694
695
696
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


697
def test_random_erasing_save_load(tmpdir):
698
    fn = T.RandomErasing(value=0.2)
699
    _test_fn_save_load(fn, tmpdir)
700
701
702
703
704
705
706
707
708
709


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


710
@pytest.mark.parametrize("device", cpu_and_gpu())
711
def test_normalize(device, tmpdir):
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

726
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
727
728


729
@pytest.mark.parametrize("device", cpu_and_gpu())
730
def test_linear_transformation(device, tmpdir):
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

752
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
753
754


755
@pytest.mark.parametrize("device", cpu_and_gpu())
756
757
758
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
759
760
761
762
763
764
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
765
766
767
768
769
770
771
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
772
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
773

774
775
776
777
778
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
779
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
780
781
782
        torch.jit.script(t)


783
@pytest.mark.parametrize("device", cpu_and_gpu())
784
785
786
787
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
804
805
806
807
808
809

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
810
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
811
812
813
814

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
815
816
817
818
819
820
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
821
822
823
824
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


825
826
827
828
829
830
831
832
833
834
835
836
837
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
838
def test_gaussian_blur(device, channels, meth_kwargs):
839
840
841
842
843
844
845
846
847
848
849
    if all(
        [
            device == "cuda",
            channels == 1,
            meth_kwargs["kernel_size"] in [23, [23]],
            torch.version.cuda == "11.3",
            sys.platform in ("win32", "cygwin"),
        ]
    ):
        pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")

850
    tol = 1.0 + 1e-10
851
    torch.manual_seed(12)
852
    _test_class_op(
853
854
855
856
857
858
859
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
860
    )
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fill",
    [
        1,
        1.0,
        [1],
        [1.0],
        (1,),
        (1.0,),
        [1, 2, 3],
        [1.0, 2.0, 3.0],
        (1, 2, 3),
        (1.0, 2.0, 3.0),
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_elastic_transform(device, channels, fill):
    if isinstance(fill, (list, tuple)) and len(fill) > 1 and channels == 1:
        # For this the test would correctly fail, since the number of channels in the image does not match `fill`.
        # Thus, this is not an issue in the transform, but rather a problem of parametrization that just gives the
        # product of `fill` and `channels`.
        return

    _test_class_op(
        T.ElasticTransform,
        meth_kwargs=dict(fill=fill),
        channels=channels,
        device=device,
    )