test_transforms_tensor.py 29.6 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
import pytest
11
from typing import Sequence
12

Nicolas Hug's avatar
Nicolas Hug committed
13
14
15
16
17
18
19
20
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
21
    cpu_and_gpu,
22
    cpu_only
Nicolas Hug's avatar
Nicolas Hug committed
23
)
24
from _assert_utils import assert_equal
25
26


27
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
28
29


30
31
32
33
34
35
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
36

37

38
39
40
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
41

42
43
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
44
        torch.manual_seed(12)
45
46
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
47

48
49
50
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
51
52


53
54
def _test_functional_op(f, device, fn_kwargs=None, test_exact_match=True, **match_kwargs):
    fn_kwargs = fn_kwargs or {}
55

56
57
58
59
60
61
62
    tensor, pil_img = _create_data(height=10, width=10, device=device)
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
63
64


65
66
67
def _test_class_op(method, device, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
68

69
70
71
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
72

73
74
75
76
77
78
79
80
81
82
    tensor, pil_img = _create_data(26, 34, device=device)
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
83

84
85
86
87
88
89
90
91
92
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
93

94
95
96
97
98
99
100
101
102
103

def _test_op(func, method, device, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)


class Tester(unittest.TestCase):

    def setUp(self):
        self.device = "cpu"
104
105

    def test_random_horizontal_flip(self):
106
        _test_op(F.hflip, T.RandomHorizontalFlip, device=self.device)
107
108

    def test_random_vertical_flip(self):
109
        _test_op(F.vflip, T.RandomVerticalFlip, device=self.device)
110

111
    def test_random_invert(self):
112
        _test_op(F.invert, T.RandomInvert, device=self.device)
113
114
115

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
116
117
118
        _test_op(
            F.posterize, T.RandomPosterize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
119
120
121
122
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
123
124
125
        _test_op(
            F.solarize, T.RandomSolarize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
126
127
128
129
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
130
131
132
        _test_op(
            F.adjust_sharpness, T.RandomAdjustSharpness, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
133
134
135
        )

    def test_random_autocontrast(self):
136
137
        # We check the max abs difference because on some (very rare) pixels, the actual value may be different
        # between PIL and tensors due to floating approximations.
138
139
140
141
        _test_op(
            F.autocontrast, T.RandomAutocontrast, device=self.device, test_exact_match=False,
            agg_method='max', tol=(1 + 1e-5), allowed_percentage_diff=.05
        )
142
143

    def test_random_equalize(self):
144
        _test_op(F.equalize, T.RandomEqualize, device=self.device)
145

146
    def test_normalize(self):
147
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
Nicolas Hug's avatar
Nicolas Hug committed
148
        tensor, _ = _create_data(26, 34, device=self.device)
149

150
151
152
153
        with self.assertRaisesRegex(TypeError, r"Input tensor should be a float tensor"):
            fn(tensor)

        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)
154
155
156
157
        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        scripted_fn = torch.jit.script(fn)

158
159
        _test_transform_vs_scripted(fn, scripted_fn, tensor)
        _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
160

161
162
163
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

164
165
166
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

Nicolas Hug's avatar
Nicolas Hug committed
167
        tensor, _ = _create_data(h, w, channels=c, device=self.device)
168
169
170
171
172
173
174

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

175
        _test_transform_vs_scripted(fn, scripted_fn, tensor)
176
177
178
179
180
181
182
183

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
184
        assert_equal(transformed_batch, s_transformed_batch)
185

186
187
188
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

189
    def test_compose(self):
Nicolas Hug's avatar
Nicolas Hug committed
190
        tensor, _ = _create_data(26, 34, device=self.device)
191
192
193
194
195
196
197
198
199
200
201
202
203
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
204
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
205
206
207
208
209
210
211

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

212
    def test_random_apply(self):
Nicolas Hug's avatar
Nicolas Hug committed
213
        tensor, _ = _create_data(26, 34, device=self.device)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
230
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
231
232
233
234
235
236
237
238
239
240

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

241
242
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
243
244
245
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
246
247
        )

248
249
250
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
251
252
        )

253
254
255
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
256
257
        )

258
259
260
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
261
262
        )

263
264
265
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
266
267
        )

268
269
270
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
271
272
        )

vfdev's avatar
vfdev committed
273
274
275
276
277
278
279
280
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

Nicolas Hug's avatar
Nicolas Hug committed
281
        tensor, _ = _create_data(24, 32, channels=3, device=self.device)
vfdev's avatar
vfdev committed
282
283
284
285
286
287
288
289
290
291
292
293
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
294
295
            _test_transform_vs_scripted(fn, scripted_fn, tensor)
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
vfdev's avatar
vfdev committed
296

297
298
299
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

300
    def test_convert_image_dtype(self):
Nicolas Hug's avatar
Nicolas Hug committed
301
        tensor, _ = _create_data(26, 34, device=self.device)
302
303
304
305
306
307
308
309
310
311
312
313
314
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
315
                        _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
316
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
317
                        _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
318
319
                    continue

320
321
                _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
322
323
324
325

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

326
327
328
329
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

330
        s_transform = None
331
332
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
333
334
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
335
                for _ in range(25):
336
337
                    _test_transform_vs_scripted(transform, s_transform, tensor)
                    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
338

339
340
341
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
342

343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
@pytest.mark.parametrize('device', cpu_and_gpu())
class TestColorJitter:

    @pytest.mark.parametrize('brightness', [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_brightness(self, brightness, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('contrast', [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_contrast(self, contrast, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('saturation', [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
    def test_color_jitter_saturation(self, saturation, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('hue', [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
    def test_color_jitter_hue(self, hue, device):
        meth_kwargs = {"hue": hue}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=16.1, agg_method="max"
        )

    def test_color_jitter_all(self, device):
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=12.1, agg_method="max"
        )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('m', ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize('mul', [1, -1])
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
    _test_functional_op(
        F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m},
        device=device
    )
    # Test functional.pad and transforms.Pad with padding as [int, ]
    fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
    meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
    _test_op(
        F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('padding_config', [
    {"padding_mode": "constant", "fill": 0},
    {"padding_mode": "constant", "fill": 10},
    {"padding_mode": "constant", "fill": 20},
    {"padding_mode": "edge"},
    {"padding_mode": "reflect"}
])
@pytest.mark.parametrize('size', [5, [5, ], [6, 6]])
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
    _test_class_op(T.RandomCrop, device, config)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_center_crop(device):
    fn_kwargs = {"output_size": (4, 5)}
    meth_kwargs = {"size": (4, 5), }
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    fn_kwargs = {"output_size": (5,)}
    meth_kwargs = {"size": (5, )}
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
    f = T.CenterCrop(size=[5, ])
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))


494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('fn, method, out_length', [
    # test_five_crop
    (F.five_crop, T.FiveCrop, 5),
    # test_ten_crop
    (F.ten_crop, T.TenCrop, 10)
])
@pytest.mark.parametrize('size', [(5, ), [5, ], (4, 5), [4, 5]])
def test_x_crop(fn, method, out_length, size, device):
    meth_kwargs = fn_kwargs = {'size': size}
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


@cpu_only
@pytest.mark.parametrize('method', ["FiveCrop", "TenCrop"])
def test_x_crop_save(method):
    fn = getattr(T, method)(size=[5, ])
    scripted_fn = torch.jit.script(fn)
    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))


class TestResize:
    @cpu_only
    @pytest.mark.parametrize('size', [32, 34, 35, 36, 38])
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', [None, torch.float32, torch.float64])
    @pytest.mark.parametrize('size', [[32, ], [32, 32], (32, 32), [34, 35]])
    @pytest.mark.parametrize('max_size', [None, 35, 1000])
    @pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.xfail("with max_size, size must be a sequence with 2 elements")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

    @cpu_only
    def test_resize_save(self):
        transform = T.Resize(size=[32, ])
        s_transform = torch.jit.script(transform)
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize('ratio', [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize('size', [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]])
    @pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR, BICUBIC])
    def test_resized_crop(self, scale, ratio, size, interpolation, device):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(size=size, scale=scale, ratio=ratio, interpolation=interpolation)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

    @cpu_only
    def test_resized_crop_save(self):
        transform = T.RandomResizedCrop(size=[32, ])
        s_transform = torch.jit.script(transform)
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))


610
611
612
613
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
614
        torch.set_deterministic(False)
615
616
617
        self.device = "cuda"


618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_random_affine(device):
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('shear', [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]])
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('translate', [(0.1, 0.2), [0.2, 0.1]])
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('center', [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize('expand', [True, False])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomRotation(
        degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_rotate_save():
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('distortion_scale', np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomPerspective(
        distortion_scale=distortion_scale,
        interpolation=interpolation,
        fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_perspective_save():
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('Klass, meth_kwargs', [
    (T.Grayscale, {"num_output_channels": 1}),
    (T.Grayscale, {"num_output_channels": 3}),
    (T.RandomGrayscale, {})
])
def test_to_grayscale(device, Klass, meth_kwargs):

    tol = 1.0 + 1e-10
    _test_class_op(
        Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
        tol=tol, agg_method="max"
    )


738
739
if __name__ == '__main__':
    unittest.main()