test_transforms_tensor.py 34.3 KB
Newer Older
1
import os
2
import sys
3
4

import numpy as np
5
import pytest
6
import torch
Nicolas Hug's avatar
Nicolas Hug committed
7
8
9
10
11
12
13
14
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
15
    cpu_and_gpu,
16
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
17
)
18
from PIL import Image
19
20
21
from torchvision import transforms as T
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
22
from torchvision.transforms.autoaugment import _apply_op
23

24
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
25
26


27
28
29
30
31
32
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
33

34

35
36
37
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
38

39
40
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
41
        torch.manual_seed(12)
42
43
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
44

45
46
47
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
48
49


50
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
51
    fn_kwargs = fn_kwargs or {}
52

53
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
54
55
56
57
58
59
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
60
61


62
def _test_class_op(method, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
63
64
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
65

66
67
68
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
69

70
    tensor, pil_img = _create_data(26, 34, channels, device=device)
71
72
73
74
75
76
77
78
79
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
80

81
82
83
84
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

85
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
86
87
88
89
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
90

91

92
93
94
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
95
96


97
@pytest.mark.parametrize("device", cpu_and_gpu())
98
@pytest.mark.parametrize(
99
100
    "func,method,fn_kwargs,match_kwargs",
    [
101
102
103
104
105
106
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
107
108
109
110
111
112
113
114
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
115
)
116
@pytest.mark.parametrize("channels", [1, 3])
117
118
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
119

120

121
@pytest.mark.parametrize("seed", range(10))
122
123
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
124
class TestColorJitter:
125
126
127
128
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

129
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
130
    def test_color_jitter_brightness(self, brightness, device, channels):
131
132
133
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
134
135
136
137
138
139
140
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
141
142
        )

143
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
144
    def test_color_jitter_contrast(self, contrast, device, channels):
145
146
147
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
148
149
150
151
152
153
154
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
155
156
        )

157
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
158
    def test_color_jitter_saturation(self, saturation, device, channels):
159
160
161
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
162
163
164
165
166
167
168
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
169
170
        )

171
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
172
    def test_color_jitter_hue(self, hue, device, channels):
173
174
        meth_kwargs = {"hue": hue}
        _test_class_op(
175
176
177
178
179
180
181
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
182
183
        )

184
    def test_color_jitter_all(self, device, channels):
185
186
187
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
188
189
190
191
192
193
194
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
195
196
197
        )


198
199
200
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
201
202
203
204
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
205
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
206
    # Test functional.pad and transforms.Pad with padding as [int, ]
207
208
209
210
211
212
213
214
    fn_kwargs = meth_kwargs = {
        "padding": [
            mul * 2,
        ],
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
215
216
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
217
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
218
219
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
220
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
221
222


223
@pytest.mark.parametrize("device", cpu_and_gpu())
224
225
226
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
227
228
229
230
231
232
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "constant", "fill": 20},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        5,
        [
            5,
        ],
        [6, 6],
    ],
)
272
273
274
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
275
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
276
277


278
@pytest.mark.parametrize("device", cpu_and_gpu())
279
def test_center_crop(device, tmpdir):
280
    fn_kwargs = {"output_size": (4, 5)}
281
282
283
284
    meth_kwargs = {
        "size": (4, 5),
    }
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
285
    fn_kwargs = {"output_size": (5,)}
286
    meth_kwargs = {"size": (5,)}
287
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
288
289
290
291
292
293
294
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
295
296
297
298
299
    f = T.CenterCrop(
        size=[
            5,
        ]
    )
300
301
302
303
304
305
306
307
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

308
    scripted_fn.save(os.path.join(tmpdir, "t_center_crop.pt"))
309
310


311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        (5,),
        [
            5,
        ],
        (4, 5),
        [4, 5],
    ],
)
332
def test_x_crop(fn, method, out_length, size, device):
333
    meth_kwargs = fn_kwargs = {"size": size}
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


369
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
370
def test_x_crop_save(method, tmpdir):
371
372
373
374
375
    fn = getattr(T, method)(
        size=[
            5,
        ]
    )
376
    scripted_fn = torch.jit.script(fn)
377
    scripted_fn.save(os.path.join(tmpdir, f"t_op_list_{method}.pt"))
378
379
380


class TestResize:
381
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
382
383
384
385
386
387
388
389
390
391
392
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
    @pytest.mark.parametrize(
        "size",
        [
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [34, 35],
        ],
    )
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.xfail("with max_size, size must be a sequence with 2 elements")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

423
    def test_resize_save(self, tmpdir):
424
425
426
427
428
        transform = T.Resize(
            size=[
                32,
            ]
        )
429
        s_transform = torch.jit.script(transform)
430
        s_transform.save(os.path.join(tmpdir, "t_resize.pt"))
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize(
        "size",
        [
            (32,),
            [
                44,
            ],
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [44, 55],
        ],
    )
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
451
452
453
454
455
456
457
458
    def test_resized_crop(self, scale, ratio, size, interpolation, device):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(size=size, scale=scale, ratio=ratio, interpolation=interpolation)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

459
    def test_resized_crop_save(self, tmpdir):
460
461
462
463
464
        transform = T.RandomResizedCrop(
            size=[
                32,
            ]
        )
465
        s_transform = torch.jit.script(transform)
466
        s_transform.save(os.path.join(tmpdir, "t_resized_crop.pt"))
467
468


469
470
471
472
473
474
475
476
477
478
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


479
@pytest.mark.parametrize("device", cpu_and_gpu())
480
def test_random_affine(device, tmpdir):
481
482
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
483
    s_transform.save(os.path.join(tmpdir, "t_random_affine.pt"))
484
485


486
487
488
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
489
490
491
492
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


493
494
495
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
496
497
498
499
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


500
501
502
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
503
504
505
506
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


507
508
509
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
510
511
512
513
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
529
530
531
532
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
551
552
553
554
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

555
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
556
557
558
559
560
561
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


562
def test_random_rotate_save(tmpdir):
563
564
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
565
    s_transform.save(os.path.join(tmpdir, "t_random_rotate.pt"))
566
567


568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
584
585
586
587
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

588
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
589
590
591
592
593
594
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


595
def test_random_perspective_save(tmpdir):
596
597
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
598
    s_transform.save(os.path.join(tmpdir, "t_perspective.pt"))
599
600


601
602
603
604
605
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
606
607
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
608
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
609
610


611
612
613
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
614
615
616
617
618
619
620
621
622
623
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

624
625
626
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
627
628
629
630
631
632
633
634
635
636
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


637
def test_convert_image_dtype_save(tmpdir):
638
639
    fn = T.ConvertImageDtype(dtype=torch.uint8)
    scripted_fn = torch.jit.script(fn)
640
    scripted_fn.save(os.path.join(tmpdir, "t_convert_dtype.pt"))
641
642


643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
659
660
661
662
663
664
665
666
667
668
669
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
687
688
689
690
691
692
693
694
695
696
697
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
713
714
715
716
717
718
719
720
721
722
723
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
def test_augmix(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    class DeterministicAugMix(T.AugMix):
        def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
            # patch the method to ensure that the order of rand calls doesn't affect the outcome
            return params.softmax(dim=-1)

    transform = DeterministicAugMix(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
756
757
def test_autoaugment_save(augmentation, tmpdir):
    transform = augmentation()
758
    s_transform = torch.jit.script(transform)
759
    s_transform.save(os.path.join(tmpdir, "t_autoaugment.pt"))
760
761


762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
        return pil_img.transform((image_size, image_size), Image.AFFINE, matrix, resample=resample)

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
        F.InterpolationMode.NEAREST: Image.NEAREST,
        F.InterpolationMode.BILINEAR: Image.BILINEAR,
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)

    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


804
@pytest.mark.parametrize("device", cpu_and_gpu())
805
@pytest.mark.parametrize(
806
807
    "config",
    [{"value": 0.2}, {"value": "random"}, {"value": (0.2, 0.2, 0.2)}, {"value": "random", "ratio": (0.1, 0.2)}],
808
809
810
811
812
813
814
815
816
817
818
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


819
def test_random_erasing_save(tmpdir):
820
821
    fn = T.RandomErasing(value=0.2)
    scripted_fn = torch.jit.script(fn)
822
    scripted_fn.save(os.path.join(tmpdir, "t_random_erasing.pt"))
823
824
825
826
827
828
829
830
831
832


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


833
@pytest.mark.parametrize("device", cpu_and_gpu())
834
def test_normalize(device, tmpdir):
835
836
837
838
839
840
841
842
843
844
845
846
847
848
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

849
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
850
851


852
@pytest.mark.parametrize("device", cpu_and_gpu())
853
def test_linear_transformation(device, tmpdir):
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

875
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
876
877


878
@pytest.mark.parametrize("device", cpu_and_gpu())
879
880
881
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
882
883
884
885
886
887
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
888
889
890
891
892
893
894
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
895
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
896

897
898
899
900
901
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
902
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
903
904
905
        torch.jit.script(t)


906
@pytest.mark.parametrize("device", cpu_and_gpu())
907
908
909
910
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
927
928
929
930
931
932

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
933
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
934
935
936
937

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
938
939
940
941
942
943
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
944
945
946
947
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


948
949
950
951
952
953
954
955
956
957
958
959
960
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
961
def test_gaussian_blur(device, channels, meth_kwargs):
962
963
964
965
966
967
968
969
970
971
972
    if all(
        [
            device == "cuda",
            channels == 1,
            meth_kwargs["kernel_size"] in [23, [23]],
            torch.version.cuda == "11.3",
            sys.platform in ("win32", "cygwin"),
        ]
    ):
        pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")

973
    tol = 1.0 + 1e-10
974
    torch.manual_seed(12)
975
    _test_class_op(
976
977
978
979
980
981
982
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
983
    )